Menu Close

Prove-that-the-ten-s-digit-of-any-power-of-3-is-even-e-g-the-ten-s-digit-of-3-6-729-is-2-




Question Number 21682 by Tinkutara last updated on 30/Sep/17
Prove that the ten′s digit of any power  of 3 is even. [e.g. the ten′s digit of 3^6  =  729 is 2].
Provethatthetensdigitofanypowerof3iseven.[e.g.thetensdigitof36=729is2].
Answered by alex041103 last updated on 30/Sep/17
We are going to prove this by induction.  For 3^0 (n=0) the statement is true.  Let′s supppose that the statement is  true for 3^n  and 3^n =100A_n +10B_n +C_n   (statement : B_n ≡0(mod 2))  ⇒3^(n+1) =3×3^n =3(100A_n +10B_n +C_n )=  =100(3A_n )+10(3B_n )+(3C_n )=  =100A_(n+1) +10B_(n+1) +C_(n+1)   Let′s define mod(x, n) as mod(x, n)≡x(mod n)  where mod(x, n)=[0, n).  ⇒B_(n+1) =((mod((30B_n +3C_n ), 100)−mod((30B_n +3C_n ),10))/(10))  But 30B_n +3C_n ≡3C_n (mod 10)  ⇒B_(n+1) ≡3B_n +(tens of 3C_n ) (mod 2)  C_n can be 1,3,7,9 and 3C_n can be  3, 9, 21, 27 ⇒ tens of 3C_n  can be  0,0,2,2 which are all even  ⇒B_(n+1) ≡3B_n (mod 2)≡B_n (mod 2)  So because B_0 ≡0(mod 2) ⇒  B_n ≡0(mod 2) for ∀n.  So the statement is true.  Q.E.D.
Wearegoingtoprovethisbyinduction.For30(n=0)thestatementistrue.Letssuppposethatthestatementistruefor3nand3n=100An+10Bn+Cn(statement:Bn0(mod2))3n+1=3×3n=3(100An+10Bn+Cn)==100(3An)+10(3Bn)+(3Cn)==100An+1+10Bn+1+Cn+1Letsdefinemod(x,n)asmod(x,n)x(modn)wheremod(x,n)=[0,n).Bn+1=mod((30Bn+3Cn),100)mod((30Bn+3Cn),10)10But30Bn+3Cn3Cn(mod10)Bn+13Bn+(tensof3Cn)(mod2)Cncanbe1,3,7,9and3Cncanbe3,9,21,27tensof3Cncanbe0,0,2,2whichareallevenBn+13Bn(mod2)Bn(mod2)SobecauseB00(mod2)Bn0(mod2)forn.Sothestatementistrue.Q.E.D.
Commented by Tinkutara last updated on 01/Oct/17
Thank you very much Sir!
ThankyouverymuchSir!

Leave a Reply

Your email address will not be published. Required fields are marked *