Menu Close

prove-that-there-exist-unique-intergers-p-and-s-sucb-that-a-bp-s-with-b-2-lt-s-b-2-hence-find-p-and-s-given-that-a-49-and-b-26-




Question Number 63532 by Rio Michael last updated on 05/Jul/19
prove that there exist unique intergers p and s sucb that  a = bp + s with −((∣b∣)/2)< s ≤((∣b∣)/2)  hence find p and s given that a=49 and b=26
provethatthereexistuniqueintergerspandssucbthata=bp+swithb2<sb2hencefindpandsgiventhata=49andb=26
Answered by MJS last updated on 05/Jul/19
a=bp+s ⇒ s=a−bp  case 1: b>0  −(b/2)<a−bp≤(b/2)  (a/b)−(1/2)≤p<(a/b)+(1/2)  case 2: b<0  (b/2)<a−bp≤(b/2)  (a/b)−(1/2)<p≤(a/b)+(1/2)  in both cases:  the width of the interval [(a/b)−(1/2); (a/b)+(1/2)] is 1 ⇒  ⇒ there′s exactly one p∈Z∧((a/b)−(1/2)≤p<(a/b)+(1/2)∨(a/b)−(1/2)<p≤(a/b)+(1/2))  ⇒ s is also unique    a=49∧b=26  ((49)/(26))−(1/2)≤p<((49)/(26))+(1/2)  ((18)/(13))≤p<((31)/(13)) ⇒ p=2  s=a−bp=49−26×2=−3
a=bp+ss=abpcase1:b>0b2<abpb2ab12p<ab+12case2:b<0b2<abpb2ab12<pab+12inbothcases:thewidthoftheinterval[ab12;ab+12]is1theresexactlyonepZ(ab12p<ab+12ab12<pab+12)sisalsouniquea=49b=26492612p<4926+121813p<3113p=2s=abp=4926×2=3

Leave a Reply

Your email address will not be published. Required fields are marked *