Menu Close

Prove-that-there-exists-M-gt-0-such-that-for-any-positive-integers-n-we-have-1-2-n-1-M-




Question Number 113641 by ZiYangLee last updated on 14/Sep/20
Prove that there exists M>0 such that  for any positive integers n, we have  (√(1+(√(2+(√(...+(√(n+1))))))))≤M
ProvethatthereexistsM>0suchthatforanypositiveintegersn,wehave1+2++n+1M
Commented by mr W last updated on 14/Sep/20
A_n =(√(1+(√(2+(√(3+...(√n)))))))  A_n >(√(1+(√(1+(√(1+...(√1)))))))=C  1+C=C^2   C^2 −C−1=0  C=((1+(√5))/2)  A_n <(√(n+(√(n+(√(n+...(√n)))))))=D  n+D=D^2   D^2 −D−n=0  D=((1+(√(1+4n)))/2)  ((1+(√5))/2)<A_n <((1+(√(1+4n)))/2)  with M=⌈((1+(√(1+4n)))/2)⌉ which always exists  A_n <M
An=1+2+3+nAn>1+1+1+1=C1+C=C2C2C1=0C=1+52An<n+n+n+n=Dn+D=D2D2Dn=0D=1+1+4n21+52<An<1+1+4n2withM=1+1+4n2whichalwaysexistsAn<M

Leave a Reply

Your email address will not be published. Required fields are marked *