Menu Close

Prove-that-there-exists-M-gt-0-such-that-for-any-positive-integers-n-we-have-1-2-n-1-M-




Question Number 113641 by ZiYangLee last updated on 14/Sep/20
Prove that there exists M>0 such that  for any positive integers n, we have  (√(1+(√(2+(√(...+(√(n+1))))))))≤M
$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{there}\:\mathrm{exists}\:{M}>\mathrm{0}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{for}\:\mathrm{any}\:\mathrm{positive}\:\mathrm{integers}\:{n},\:\mathrm{we}\:\mathrm{have} \\ $$$$\sqrt{\mathrm{1}+\sqrt{\mathrm{2}+\sqrt{…+\sqrt{{n}+\mathrm{1}}}}}\leqslant{M} \\ $$
Commented by mr W last updated on 14/Sep/20
A_n =(√(1+(√(2+(√(3+...(√n)))))))  A_n >(√(1+(√(1+(√(1+...(√1)))))))=C  1+C=C^2   C^2 −C−1=0  C=((1+(√5))/2)  A_n <(√(n+(√(n+(√(n+...(√n)))))))=D  n+D=D^2   D^2 −D−n=0  D=((1+(√(1+4n)))/2)  ((1+(√5))/2)<A_n <((1+(√(1+4n)))/2)  with M=⌈((1+(√(1+4n)))/2)⌉ which always exists  A_n <M
$${A}_{{n}} =\sqrt{\mathrm{1}+\sqrt{\mathrm{2}+\sqrt{\mathrm{3}+…\sqrt{{n}}}}} \\ $$$${A}_{{n}} >\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+…\sqrt{\mathrm{1}}}}}={C} \\ $$$$\mathrm{1}+{C}={C}^{\mathrm{2}} \\ $$$${C}^{\mathrm{2}} −{C}−\mathrm{1}=\mathrm{0} \\ $$$${C}=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$${A}_{{n}} <\sqrt{{n}+\sqrt{{n}+\sqrt{{n}+…\sqrt{{n}}}}}={D} \\ $$$${n}+{D}={D}^{\mathrm{2}} \\ $$$${D}^{\mathrm{2}} −{D}−{n}=\mathrm{0} \\ $$$${D}=\frac{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{4}{n}}}{\mathrm{2}} \\ $$$$\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}<{A}_{{n}} <\frac{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{4}{n}}}{\mathrm{2}} \\ $$$${with}\:{M}=\lceil\frac{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{4}{n}}}{\mathrm{2}}\rceil\:{which}\:{always}\:{exists} \\ $$$${A}_{{n}} <{M} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *