Menu Close

Prove-that-this-is-an-identity-in-x-x-a-x-b-c-a-c-b-x-b-x-c-a-b-a-c-x-c-x-a-b-c-b-a-1-




Question Number 19900 by Tinkutara last updated on 17/Aug/17
Prove that this is an identity in x:  (((x−a)(x−b))/((c−a)(c−b)))+(((x−b)(x−c))/((a−b)(a−c)))+(((x−c)(x−a))/((b−c)(b−a)))=1
Provethatthisisanidentityinx:(xa)(xb)(ca)(cb)+(xb)(xc)(ab)(ac)+(xc)(xa)(bc)(ba)=1
Answered by Rasheed.Sindhi last updated on 17/Aug/17
−(((x−a)(x−b))/((c−a)(b−c)))−(((x−b)(x−c))/((a−b)(c−a)))−(((x−c)(x−a))/((b−c)(a−b)))=1    ((−(a−b)(x−a)(x−b)−(b−c)(x−b)(x−c)−(c−a)(x−c)(x−a))/((a−b)(b−c)(c−a)))=1  −(((a−b)(x^2 −(a+b)x+ab)+(b−c)(x^2 −(b+c)x+bc)+(c−a)(x^2 −(c+a)x+ca))/((a−b)(b−c)(c−a)))=1  −(([(a−b)+(b−c)+(c−a)]x^2 −[(a^2 −b^2 )+(b^2 −c^2 )+(c^2 −a^2 )]x+ab(a−b)+bc(b−c)+ca(c−a))/((a−b)(b−c)(c−a)))=1  −((0x^2 −0x+ab(a−b)+bc(b−c)+ca(c−a))/((a−b)(b−c)(c−a)))=1  −((ab(a−b)+bc(b−c)+ca(c−a))/((a−b)(b−c)(c−a)))=1  −((a^2 b−ab^2 +b^2 c−bc^2 +c^2 a−ca^2 )/((a−b)(b−c)(c−a)))=1  −((a^2 b−ab^2 +b^2 c−ca^2 −bc^2 +c^2 a)/((a−b)(b−c)(c−a)))=1  −((ab(a−b)−c(a^2 −b^2 )+c^2 (a−b))/((a−b)(b−c)(c−a)))=1  −(((a−b)[ab−c(a+b)+c^2 ])/((a−b)(b−c)(c−a)))=1  −(((a−b)[c^2 −ca−cb+ab])/((a−b)(b−c)(c−a)))=1  −(((a−b)[c(c−a)−b(c−a)])/((a−b)(b−c)(c−a)))=1  −(((a−b)[c(c−a)−b(c−a)])/((a−b)(b−c)(c−a)))=1  −(((a−b)(c−b)(c−a))/((a−b)(b−c)(c−a)))=1  (((a−b)(b−c)(c−a))/((a−b)(b−c)(c−a)))=1     1=1  Free of x.   I.e the equation is true for all  values of x.  That means the given equation  is an identity in x.
(xa)(xb)(ca)(bc)(xb)(xc)(ab)(ca)(xc)(xa)(bc)(ab)=1(ab)(xa)(xb)(bc)(xb)(xc)(ca)(xc)(xa)(ab)(bc)(ca)=1(ab)(x2(a+b)x+ab)+(bc)(x2(b+c)x+bc)+(ca)(x2(c+a)x+ca)(ab)(bc)(ca)=1[(ab)+(bc)+(ca)]x2[(a2b2)+(b2c2)+(c2a2)]x+ab(ab)+bc(bc)+ca(ca)(ab)(bc)(ca)=10x20x+ab(ab)+bc(bc)+ca(ca)(ab)(bc)(ca)=1ab(ab)+bc(bc)+ca(ca)(ab)(bc)(ca)=1a2bab2+b2cbc2+c2aca2(ab)(bc)(ca)=1a2bab2+b2cca2bc2+c2a(ab)(bc)(ca)=1ab(ab)c(a2b2)+c2(ab)(ab)(bc)(ca)=1(ab)[abc(a+b)+c2](ab)(bc)(ca)=1(ab)[c2cacb+ab](ab)(bc)(ca)=1(ab)[c(ca)b(ca)](ab)(bc)(ca)=1(ab)[c(ca)b(ca)](ab)(bc)(ca)=1(ab)(cb)(ca)(ab)(bc)(ca)=1(ab)(bc)(ca)(ab)(bc)(ca)=11=1Freeofx.I.etheequationistrueforallvaluesofx.Thatmeansthegivenequationisanidentityinx.
Commented by Tinkutara last updated on 17/Aug/17
Thank you very much Sir!
ThankyouverymuchSir!
Answered by ajfour last updated on 17/Aug/17
T_1 +T_2 =(((b−a)(x−a)(x−b)+(c−b)(x−b)(x−c))/((a−b)(b−c)(c−a)))  =(((x−b)[x(c−a)−ab+a^2 +bc−c^2 ])/((a−b)(b−c)(c−a)))  =(((x−b)[x(c−a)+b(c−a)−(c+a)(c−a)])/((a−b)(b−c)(c−a)))  =(((x−b)(x+b−a−c))/((a−b)(b−c)))  =(([x^2 −(a+c)x+ac]+[−b^2 +ab+bc−ac])/((a−b)(b−c)))  =(((x−c)(x−a))/((a−b)(b−c)))+(((a−b)(b−c))/((a−b)(b−c)))  T_1 +T_2 =−T_3 +1  or     T_1 +T_2 +T_3 =1   (T_i   being the i^(th)  term on l.h.s. ) .
T1+T2=(ba)(xa)(xb)+(cb)(xb)(xc)(ab)(bc)(ca)=(xb)[x(ca)ab+a2+bcc2](ab)(bc)(ca)=(xb)[x(ca)+b(ca)(c+a)(ca)](ab)(bc)(ca)=(xb)(x+bac)(ab)(bc)=[x2(a+c)x+ac]+[b2+ab+bcac](ab)(bc)=(xc)(xa)(ab)(bc)+(ab)(bc)(ab)(bc)T1+T2=T3+1orT1+T2+T3=1(Tibeingtheithtermonl.h.s.).
Commented by Tinkutara last updated on 17/Aug/17
Thank you very much Sir! This  reduced calculation to an extent.
ThankyouverymuchSir!Thisreducedcalculationtoanextent.

Leave a Reply

Your email address will not be published. Required fields are marked *