Menu Close

Prove-that-three-points-z-1-z-2-z-3-are-collinear-if-determinant-z-1-z-1-1-z-2-z-2-1-z-3-z-3-1-0-




Question Number 19507 by Tinkutara last updated on 12/Aug/17
Prove that three points z_1 , z_2 , z_3  are  collinear if  determinant ((z_1 ,z_1 ^� ,1),(z_2 ,z_2 ^� ,1),(z_3 ,z_3 ^� ,1))= 0
Provethatthreepointsz1,z2,z3arecollinearif|z1z¯11z2z¯21z3z¯31|=0
Answered by dioph last updated on 12/Aug/17
 determinant ((z_1 ,z_1 ^� ,1),(z_2 ,z_2 ^� ,1),(z_3 ,z_3 ^� ,1))= 0 ⇒  ⇒ z_1 z_2 ^�  + z_1 ^� z_3  + z_2 z_3 ^�  = z_1 ^� z_2 + z_1 z_3 ^� + z_2 ^� z_3   ⇒ (z_1 z_2 ^� −z_1 ^� z_2 )+(z_1 ^� z_3 −z_1 z_3 ^� )+(z_2 z_3 ^� −z_2 ^� z_3 )=0  α_n  + iβ_n  := z_n   ⇒ (α_2 β_1 −α_1 β_2 )+(α_1 β_3 −α_3 β_1 )+(α_3 β_2 −α_2 β_3 )=0  ⇒ (α_2 −α_3 )β_1 +(α_3 −α_1 )β_2 +(α_1 −α_2 )β_3  = 0  Δα_(nm) := α_n −α_m , Δβ_(nm)  := β_n −β_m   ⇒ Δα_(31) (β_1 +Δβ_(21) )=Δα_(21) (β_1 +Δβ_(31) )+(Δα_(31) −Δα_(21) )β_1   ⇒ Δα_(31) Δβ_(21)  = Δα_(21) Δβ_(31)   ⇒((Δα_(31) )/(Δβ_(31) )) = ((Δα_(21) )/(Δβ_(21) )) ■
|z1z¯11z2z¯21z3z¯31|=0z1z¯2+z¯1z3+z2z¯3=z¯1z2+z1z¯3+z¯2z3(z1z¯2z¯1z2)+(z¯1z3z1z¯3)+(z2z¯3z¯2z3)=0αn+iβn:=zn(α2β1α1β2)+(α1β3α3β1)+(α3β2α2β3)=0(α2α3)β1+(α3α1)β2+(α1α2)β3=0Δαnm:=αnαm,Δβnm:=βnβmΔα31(β1+Δβ21)=Δα21(β1+Δβ31)+(Δα31Δα21)β1Δα31Δβ21=Δα21Δβ31Δα31Δβ31=Δα21Δβ21◼
Commented by Tinkutara last updated on 12/Aug/17
Thank you very much Sir!
ThankyouverymuchSir!

Leave a Reply

Your email address will not be published. Required fields are marked *