Menu Close

prove-that-u-n-k-1-n-1-n-k-is-convergente-




Question Number 30175 by abdo imad last updated on 17/Feb/18
prove that u_n = Σ_(k=1) ^n   (1/(n+k)) is convergente .
provethatun=k=1n1n+kisconvergente.
Commented by abdo imad last updated on 21/Feb/18
we have u_n = (1/n) Σ_(k=1) ^n   (1/(1 +(k/n))) ⇒  lim_(n→∞) u_n =lim_(n→∞) ((1−0)/n)Σ_(k=1) ^n    (1/(1+((k(1−0))/n)))   (Rieman sum)  = ∫_0 ^1        (dx/(1+x)) =[ln∣1+x∣]_0 ^1 = ln2  .
wehaveun=1nk=1n11+knlimnun=limn10nk=1n11+k(10)n(Riemansum)=01dx1+x=[ln1+x]01=ln2.
Commented by abdo imad last updated on 21/Feb/18
another method we have   u_n = (1/(n+1)) +(1/(n+2)) +.... (1/(2n))=1 +(1/2) +(1/3) +...+(1/n) +(1/(n+1)) +...  +(1/(2n)) −(1+(1/2) +(1/3) +...+(1/n))=H_(2n)  − H_n  but  H_(2n) =ln(2n) +γ  +o((1/n)) and H_n = ln(n) +γ +o((1/n))⇒  H_(2n)  −H_n =ln(((2n)/n)) +o((1/n)) ⇒lim_(n→∞) H_(2n)  −H_n =ln(2).so  lim_(n→∞) u_n =ln(2) .
anothermethodwehaveun=1n+1+1n+2+.12n=1+12+13++1n+1n+1++12n(1+12+13++1n)=H2nHnbutH2n=ln(2n)+γ+o(1n)andHn=ln(n)+γ+o(1n)H2nHn=ln(2nn)+o(1n)limnH2nHn=ln(2).solimnun=ln(2).

Leave a Reply

Your email address will not be published. Required fields are marked *