Menu Close

prove-that-with-using-hypergeometric-function-0-pi-sin-x-2-pi-3-3-1F-2-3-4-3-2-7-4-pi-4-4-




Question Number 79615 by M±th+et£s last updated on 26/Jan/20
prove that with using hypergeometric function  ∫_0 ^π sin(x^2 )=(π^3 /3) 1F_2 [(3/4);(3/2);(7/4);((−π^4 )/4)]
$${prove}\:{that}\:{with}\:{using}\:{hypergeometric}\:{function} \\ $$$$\int_{\mathrm{0}} ^{\pi} {sin}\left({x}^{\mathrm{2}} \right)=\frac{\pi^{\mathrm{3}} }{\mathrm{3}}\:\mathrm{1}{F}_{\mathrm{2}} \left[\frac{\mathrm{3}}{\mathrm{4}};\frac{\mathrm{3}}{\mathrm{2}};\frac{\mathrm{7}}{\mathrm{4}};\frac{−\pi^{\mathrm{4}} }{\mathrm{4}}\right]\: \\ $$
Commented by mind is power last updated on 27/Jan/20
are You sur/for this One ?
$${are}\:{You}\:{sur}/{for}\:{this}\:{One}\:? \\ $$
Commented by M±th+et£s last updated on 27/Jan/20
where is the wrong sir?
$${where}\:{is}\:{the}\:{wrong}\:{sir}? \\ $$
Commented by mind is power last updated on 03/Feb/20
this one i got different result    are You sir of this result ?  my bee i did mistack
$${this}\:{one}\:{i}\:{got}\:{different}\:{result}\:\: \\ $$$${are}\:{You}\:{sir}\:{of}\:{this}\:{result}\:? \\ $$$${my}\:{bee}\:{i}\:{did}\:{mistack} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *