Question Number 79615 by M±th+et£s last updated on 26/Jan/20
$${prove}\:{that}\:{with}\:{using}\:{hypergeometric}\:{function} \\ $$$$\int_{\mathrm{0}} ^{\pi} {sin}\left({x}^{\mathrm{2}} \right)=\frac{\pi^{\mathrm{3}} }{\mathrm{3}}\:\mathrm{1}{F}_{\mathrm{2}} \left[\frac{\mathrm{3}}{\mathrm{4}};\frac{\mathrm{3}}{\mathrm{2}};\frac{\mathrm{7}}{\mathrm{4}};\frac{−\pi^{\mathrm{4}} }{\mathrm{4}}\right]\: \\ $$
Commented by mind is power last updated on 27/Jan/20
$${are}\:{You}\:{sur}/{for}\:{this}\:{One}\:? \\ $$
Commented by M±th+et£s last updated on 27/Jan/20
$${where}\:{is}\:{the}\:{wrong}\:{sir}? \\ $$
Commented by mind is power last updated on 03/Feb/20
$${this}\:{one}\:{i}\:{got}\:{different}\:{result}\:\: \\ $$$${are}\:{You}\:{sir}\:{of}\:{this}\:{result}\:? \\ $$$${my}\:{bee}\:{i}\:{did}\:{mistack} \\ $$