Menu Close

prove-that-x-0-4-x-x-x-4-e-4-




Question Number 183420 by mokys last updated on 25/Dec/22
prove that Σ_(x=0) ^∞  ((4^x  . x)/(x!)) = 4 e^4
provethatx=04x.xx!=4e4
Answered by Ar Brandon last updated on 25/Dec/22
Σ_(x=0) ^∞ ((4^x x)/(x!))=Σ_(x=1) ^∞ ((4^x x)/(x!))=4Σ_(x=1) ^∞ (4^(x−1) /((x−1)!))=4Σ_(x=0) ^∞ (4^x /(x!))=4e^4
x=04xxx!=x=14xxx!=4x=14x1(x1)!=4x=04xx!=4e4
Answered by mr W last updated on 26/Dec/22
Σ_(n=0) ^∞ (x^n /(n!))=e^x   Σ_(n=0) ^∞ ((nx^(n−1) )/(n!))=e^x   ⇒Σ_(n=0) ^∞ ((nx^n )/(n!))=xe^x   set x=4:  Σ_(n=0) ^∞ ((4^n n)/(n!))=4e^4   or  Σ_(x=0) ^∞ ((4^x x)/(x!))=4e^4
n=0xnn!=exn=0nxn1n!=exn=0nxnn!=xexsetx=4:n=04nnn!=4e4orx=04xxx!=4e4

Leave a Reply

Your email address will not be published. Required fields are marked *