Menu Close

Prove-that-x-0-x-f-s-ds-f-x-




Question Number 183112 by CrispyXYZ last updated on 20/Dec/22
Prove that  (∂/∂x) ∫_0 ^x f(s)ds=f(x)
Provethatxx0f(s)ds=f(x)
Answered by Emrice last updated on 20/Dec/22
Prove that  (∂/∂x) ∫_0 ^x f(s)ds=f(x)  on sait que   ∫_a ^b  f(x)dx=∫_a ^b f(a+b−x)dx  ⇒∫_0 ^(x ) f(s)ds=∫_0 ^x f(0+x−s)ds  ⇒(∂/∂x)∫_0 ^x f(s)ds=∫_0 ^x ((∂f(x−s))/∂x)ds                                = ∫_0 ^x f′(x−s)ds                                = ∫_0 ^x f′(s)ds                                = f(x)
Provethatxx0f(s)ds=f(x)onsaitqueabf(x)dx=abf(a+bx)dx0xf(s)ds=0xf(0+xs)dsx0xf(s)ds=0xf(xs)xds=0xf(xs)ds=0xf(s)ds=f(x)
Answered by mr W last updated on 21/Dec/22
say ((dF(x))/dx)=f(x)  then ∫_0 ^x f(s)ds=F(x)−F(0)  (d/dx)∫_0 ^x f(s)ds=((dF(x))/dx)−((dF(0))/dx)=f(x) ✓
saydF(x)dx=f(x)then0xf(s)ds=F(x)F(0)ddx0xf(s)ds=dF(x)dxdF(0)dx=f(x)

Leave a Reply

Your email address will not be published. Required fields are marked *