Menu Close

prove-that-x-2-divide-x-1-n-nx-1-nintegr-




Question Number 31494 by abdo imad last updated on 09/Mar/18
prove that x^2  divide (x+1)^n_   −nx−1 .nintegr.
provethatx2divide(x+1)nnx1.nintegr.
Commented by Rasheed.Sindhi last updated on 10/Mar/18
  (x+1)^n −nx−1  x^n +nx^(n−1) +... (((   n)),((n−2)) )x^2 +nx+1−nx−1  x^n +nx^(n−1) +... (((   n)),((n−2)) )x^2   x^2 (x^(n−2) +nx^(n−3) +... (((   n)),((n−2)) ) )  Hence x^2  divides (x+1)^n −nx−1
(x+1)nnx1xn+nxn1+(nn2)x2+nx+1nx1xn+nxn1+(nn2)x2x2(xn2+nxn3+(nn2))Hencex2divides(x+1)nnx1
Commented by abdo imad last updated on 09/Mar/18
let remember this theorem  a roots of p(x) with ordr m⇔  p(a)=p^′ (a)=...=p^(m−1) (a)=0 and p^((m)) (a)≠0  and if  p(a)=p^′ (a)=...=p^((m−1)) (a)=0 ⇒(x−a)^m  divide p(x)  here we have p(x)=(x+1)^n  −nx −1 ⇒p(0)=0   p^′ (x)=n(x+1)^(n−1)  −n ⇒p^′ (0)=n−n=0 ⇒x^2 divide p(x)  plus that we have p^(′′) (x)=n(n−1)(x+1)^(n−2)  ⇒p^(′′) (p0)=n(n−1)  p^(′′) (0)≠0 ⇒0 is root of p(x) ar ordre 2.
letrememberthistheoremarootsofp(x)withordrmp(a)=p(a)==pm1(a)=0andp(m)(a)0andifp(a)=p(a)==p(m1)(a)=0(xa)mdividep(x)herewehavep(x)=(x+1)nnx1p(0)=0p(x)=n(x+1)n1np(0)=nn=0x2dividep(x)plusthatwehavep(x)=n(n1)(x+1)n2p(p0)=n(n1)p(0)00isrootofp(x)arordre2.
Commented by abdo imad last updated on 09/Mar/18
your answer is also correct sir rachid...
youranswerisalsocorrectsirrachid

Leave a Reply

Your email address will not be published. Required fields are marked *