Menu Close

prove-that-x-2-e-x-2-cos-x-2-sin-x-2-dx-pi-sin-3-tan-1-2-2-4-125-1-4-




Question Number 129764 by Eric002 last updated on 18/Jan/21
prove that  ∫_(−∞) ^(+∞) x^2  e^(−x^2 )  cos(x^2 )sin(x^2 ) dx  =(((√π)sin[(((√3)tan^(−1) (2))/2)])/(4 ((125))^(1/4) ))
provethat+x2ex2cos(x2)sin(x2)dx=πsin[3tan1(2)2]41254
Answered by Dwaipayan Shikari last updated on 18/Jan/21
∫_(−∞) ^∞ x^2 e^(−x^2 ) cos(x^2 )sin(x^2 )dx  =(1/(4i))∫_(−∞) ^∞ x^2 e^(−x^2 ) e^(2ix^2 ) −x^2 e^(−x^2 ) e^(−2ix^2 ) dx           x^2 (1+2i)=j  =(1/(4i))∫_(−∞) ^∞ x^2 e^(−x^2 (1−2i)) −x^2 e^(−x^2 (1+2i)) dx              x^2 (1−2i)=u  =(1/(8i(1−2i)))∫_(−∞) ^∞ ((u/(1−2i)))^(1/2) e^(−u) du−(1/(8i(1+2i)))∫_(−∞) ^∞ ((j/(1−2j)))^(1/2) e^(−j) dj  =(1/(4i(√((1−2i)^3 ))))Γ((3/2))−(1/(4i(√((1+2i)^3 ))))Γ((3/2))  =((√π)/(8i))((1−2i)^(−(3/2)) −(1+2i)^(−(3/2)) )8i  =((√π)/(8i))(5^(−(3/4)) e^(((3i)/2)tan^(−1) (2)) −5^(−(3/4)) e^(−((3i)/2)tan^(−1) (2)) )  =((√π)/(8i))(2isin((3/2)tan^(−1) (2))(1/( ((125))^(1/4) ))=((√π)/(4((125))^(1/4) ))sin((3/2)tan^(−1) (2))
x2ex2cos(x2)sin(x2)dx=14ix2ex2e2ix2x2ex2e2ix2dxx2(1+2i)=j=14ix2ex2(12i)x2ex2(1+2i)dxx2(12i)=u=18i(12i)(u12i)12eudu18i(1+2i)(j12j)12ejdj=14i(12i)3Γ(32)14i(1+2i)3Γ(32)=π8i((12i)32(1+2i)32)8i=π8i(534e3i2tan1(2)534e3i2tan1(2))=π8i(2isin(32tan1(2))11254=π41254sin(32tan1(2))
Commented by Eric002 last updated on 18/Jan/21
thank you sir
thankyousir
Answered by mathmax by abdo last updated on 18/Jan/21
A=∫_(−∞) ^(+∞)  x^2  e^(−x^2 ) cos(x^2 )sin(x^2 )dx we have  cos(x^2 )sin(x^2 )=cos(x^2 )cos((π/2)−x^2 )=(1/2){cos((π/2))+cos(2x^2 −(π/2))}  =(1/2)sin(2x^2 ) ⇒A=(1/2)∫_(−∞) ^(+∞)  x^2  e^(−x^2 )  sin(2x^2 )dx  ⇒2A=Im(∫_(−∞) ^(+∞)  x^2  e^(−x^2 +2ix^2 ) dx) but  ∫_(−∞) ^(+∞)  x^2  e^((−1+2i)x^2 ) dx  =2∫_0 ^∞  x^2  e^((−1+2i)x^2 ) dx  =_(x=(√t))     2∫_0 ^∞   t .e^((−1+2i)t) (dt/(2(√t)))  =∫_0 ^∞   t^(1/2)  .e^((−1+2i)t) dt =_((1−2i)t=z)     ∫_0 ^∞ (−(z/(−1+2i)))^(1/2)  e^(−z) ×((−dz)/(−1+2i))  =∫_0 ^∞ (z^(1/2) /( (√(1−2i))(1−2i)))e^(−z)  dz =(1/((1−2i)^(3/2) ))×Γ((3/2))  1−2i=(√5)e^(iarctan(−2))  =(√5)e^(−iarctan(2))  ⇒  (1−2i)^(3/2) =((√5))^(3/2)  e^(−i(3/2)arctan(2))  ⇒  ∫_(−∞) ^(+∞)  x^2  e^((−1+2i)x^2 ) dx =(e^((3/2)iarctan(2)) /5^(3/4) )×((√π)/2) ⇒  2A=(1/5^(3/4) ) sin((3/2)arctan(2))×((√π)/2) ⇒A=(1/(4(^4 (√(125)))))sin((3/2)arctan(2))
A=+x2ex2cos(x2)sin(x2)dxwehavecos(x2)sin(x2)=cos(x2)cos(π2x2)=12{cos(π2)+cos(2x2π2)}=12sin(2x2)A=12+x2ex2sin(2x2)dx2A=Im(+x2ex2+2ix2dx)but+x2e(1+2i)x2dx=20x2e(1+2i)x2dx=x=t20t.e(1+2i)tdt2t=0t12.e(1+2i)tdt=(12i)t=z0(z1+2i)12ez×dz1+2i=0z1212i(12i)ezdz=1(12i)32×Γ(32)12i=5eiarctan(2)=5eiarctan(2)(12i)32=(5)32ei32arctan(2)+x2e(1+2i)x2dx=e32iarctan(2)534×π22A=1534sin(32arctan(2))×π2A=14(4125)sin(32arctan(2))

Leave a Reply

Your email address will not be published. Required fields are marked *