Question Number 13389 by Tinkutara last updated on 19/May/17
![Prove that [x] + [2x] + [4x] + [8x] + [16x] + [32x] = 12345 has no solution.](https://www.tinkutara.com/question/Q13389.png)
Commented by prakash jain last updated on 20/May/17
![x=n+y , n∈Z^+ , 0≤y<1 [x] + [2x] + [4x] + [8x] + [16x] + [32x] =n+[y]+2n+[2y]+..+32n+[32y] =63n+[y]+[2y]+[4y]+[8y]+[16y]+[32y] =12345 ⇒n≤195 x=195+y 0≤y<1 [y]+[2y]+[4y]+[8y]+[16y]+[32y]=60 max([y])=0 max([2y])=1 max([4y])=3 max([8y])=7 max([16y)=15 max([32y])=31 max([y]+[2y]+[4y]+[8y]+[16y]+[32y])=57 no value of y is possible which will give [y]+[2y]+[4y]+[8y]+[16y]+[32y]=60 hence no solution](https://www.tinkutara.com/question/Q13423.png)
Commented by mrW1 last updated on 20/May/17

Commented by mrW1 last updated on 20/May/17
![but, can we find a solution for [y]+[2y]+[4y]+[8y]+[16y]+[32y]≤57? or how can we find?](https://www.tinkutara.com/question/Q13452.png)
Commented by prakash jain last updated on 20/May/17
![y=.99 or .999 will give [y]+[2y]+[4y]+[8y]+[16y]+[32y]=57 For other value, say 50 we can try various option 0+1+3+6+13+27=50 so we can pick y=.85 [y]=0 ]2y]=1 [4y]=3 [8y]=6 [16y]=13 [32y]=27](https://www.tinkutara.com/question/Q13456.png)
Commented by mrW1 last updated on 20/May/17
