Menu Close

Prove-that-x-2x-4x-8x-16x-32x-12345-has-no-solution-




Question Number 13389 by Tinkutara last updated on 19/May/17
Prove that  [x] + [2x] + [4x] + [8x] + [16x] + [32x] = 12345  has no solution.
Provethat[x]+[2x]+[4x]+[8x]+[16x]+[32x]=12345hasnosolution.
Commented by prakash jain last updated on 20/May/17
x=n+y , n∈Z^+ , 0≤y<1  [x] + [2x] + [4x] + [8x] + [16x] + [32x]  =n+[y]+2n+[2y]+..+32n+[32y]  =63n+[y]+[2y]+[4y]+[8y]+[16y]+[32y]  =12345  ⇒n≤195  x=195+y  0≤y<1  [y]+[2y]+[4y]+[8y]+[16y]+[32y]=60  max([y])=0  max([2y])=1  max([4y])=3  max([8y])=7  max([16y)=15  max([32y])=31  max([y]+[2y]+[4y]+[8y]+[16y]+[32y])=57  no value of y is possible which  will give   [y]+[2y]+[4y]+[8y]+[16y]+[32y]=60  hence no solution
x=n+y,nZ+,0y<1[x]+[2x]+[4x]+[8x]+[16x]+[32x]=n+[y]+2n+[2y]+..+32n+[32y]=63n+[y]+[2y]+[4y]+[8y]+[16y]+[32y]=12345n195x=195+y0y<1[y]+[2y]+[4y]+[8y]+[16y]+[32y]=60max([y])=0max([2y])=1max([4y])=3max([8y])=7max([16y)=15max([32y])=31max([y]+[2y]+[4y]+[8y]+[16y]+[32y])=57novalueofyispossiblewhichwillgive[y]+[2y]+[4y]+[8y]+[16y]+[32y]=60hencenosolution
Commented by mrW1 last updated on 20/May/17
very nice!
verynice!
Commented by mrW1 last updated on 20/May/17
but, can we find a solution for  [y]+[2y]+[4y]+[8y]+[16y]+[32y]≤57?  or how can we find?
but,canwefindasolutionfor[y]+[2y]+[4y]+[8y]+[16y]+[32y]57?orhowcanwefind?
Commented by prakash jain last updated on 20/May/17
y=.99 or .999  will give  [y]+[2y]+[4y]+[8y]+[16y]+[32y]=57  For other value, say 50  we can try various option  0+1+3+6+13+27=50  so we can pick y=.85  [y]=0  ]2y]=1  [4y]=3  [8y]=6  [16y]=13  [32y]=27
y=.99or.999willgive[y]+[2y]+[4y]+[8y]+[16y]+[32y]=57Forothervalue,say50wecantryvariousoption0+1+3+6+13+27=50sowecanpicky=.85[y]=0]2y]=1[4y]=3[8y]=6[16y]=13[32y]=27
Commented by mrW1 last updated on 20/May/17
Thanks!
Thanks!

Leave a Reply

Your email address will not be published. Required fields are marked *