Menu Close

Prove-that-x-i-x-0-




Question Number 38059 by suryavi last updated on 21/Jun/18
Prove that Σ(x_i −x^− )=0
ProvethatΣ(xix)=0
Answered by tanmay.chaudhury50@gmail.com last updated on 21/Jun/18
Σ(x_i −x^− )  x^− =((Σx_i )/n)  Σ(x_i −x^− )  =(x_1 −x^− )+(x_2 −x^− )+(x_3 −x^− )+...+(x_n −x^− )  =(x_1 +x_2 +x_3 +....)−(x^− +x^− +...+x^− )  =((Σx_i )/n)×n−nx^−   =nx^− −nx^−   =0
Σ(xix)x=ΣxinΣ(xix)=(x1x)+(x2x)+(x3x)++(xnx)=(x1+x2+x3+.)(x+x++x)=Σxin×nnx=nxnx=0

Leave a Reply

Your email address will not be published. Required fields are marked *