Menu Close

Prove-that-x-i-x-0-




Question Number 38059 by suryavi last updated on 21/Jun/18
Prove that Σ(x_i −x^− )=0
$${Prove}\:{that}\:\Sigma\left({x}_{{i}} −\overset{−} {{x}}\right)=\mathrm{0} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 21/Jun/18
Σ(x_i −x^− )  x^− =((Σx_i )/n)  Σ(x_i −x^− )  =(x_1 −x^− )+(x_2 −x^− )+(x_3 −x^− )+...+(x_n −x^− )  =(x_1 +x_2 +x_3 +....)−(x^− +x^− +...+x^− )  =((Σx_i )/n)×n−nx^−   =nx^− −nx^−   =0
$$\Sigma\left({x}_{{i}} −\overset{−} {{x}}\right) \\ $$$$\overset{−} {{x}}=\frac{\Sigma{x}_{{i}} }{{n}} \\ $$$$\Sigma\left({x}_{{i}} −\overset{−} {{x}}\right) \\ $$$$=\left({x}_{\mathrm{1}} −\overset{−} {{x}}\right)+\left({x}_{\mathrm{2}} −\overset{−} {{x}}\right)+\left({x}_{\mathrm{3}} −\overset{−} {{x}}\right)+…+\left({x}_{{n}} −\overset{−} {{x}}\right) \\ $$$$=\left({x}_{\mathrm{1}} +{x}_{\mathrm{2}} +{x}_{\mathrm{3}} +….\right)−\left(\overset{−} {{x}}+\overset{−} {{x}}+…+\overset{−} {{x}}\right) \\ $$$$=\frac{\Sigma{x}_{{i}} }{{n}}×{n}−{n}\overset{−} {{x}} \\ $$$$={n}\overset{−} {{x}}−{n}\overset{−} {{x}} \\ $$$$=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *