Menu Close

Prove-that-x-R-cos-x-1-sin-2-x-




Question Number 103921 by Rio Michael last updated on 18/Jul/20
Prove that ∀ x ∈ R^�  , ∣ cos x ∣ ≤ 1 − sin^2  x
$$\mathrm{Prove}\:\mathrm{that}\:\forall\:{x}\:\in\:\bar {\mathbb{R}}\:,\:\mid\:\mathrm{cos}\:{x}\:\mid\:\leqslant\:\mathrm{1}\:−\:\mathrm{sin}^{\mathrm{2}} \:{x} \\ $$
Answered by Worm_Tail last updated on 18/Jul/20
cosx=(√(1−sin^2 x        ))      ∣cosx∣= (√(1−sin^2 x))    ≤1−sin^2 x                   ∣cosx≤1−sin^2 x
$${cosx}=\sqrt{\mathrm{1}−{sin}^{\mathrm{2}} {x}\:\:\:\:\:\:\:\:} \\ $$$$\:\:\:\:\mid{cosx}\mid=\:\sqrt{\mathrm{1}−{sin}^{\mathrm{2}} {x}}\:\:\:\:\leqslant\mathrm{1}−{sin}^{\mathrm{2}} {x}\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\mid{cosx}\leqslant\mathrm{1}−{sin}^{\mathrm{2}} {x}\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$
Commented by Rio Michael last updated on 18/Jul/20
perfect sir thanks
$$\mathrm{perfect}\:\mathrm{sir}\:\mathrm{thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *