Menu Close

Prove-that-z-1-z-2-2-z-1-2-z-2-2-2-z-1-z-2-cos-1-2-




Question Number 19352 by Tinkutara last updated on 10/Aug/17
Prove that ∣z_1  − z_2 ∣^2  = ∣z_1 ∣^2  + ∣z_2 ∣^2   − 2∣z_1 ∣ ∣z_2 ∣ cos (θ_1  − θ_2 )
Provethatz1z22=z12+z222z1z2cos(θ1θ2)
Answered by ajfour last updated on 10/Aug/17
(r_1 cos θ_1 −r_2 cos θ_2 )^2 +(r_1 sin θ_1 −r_2 sin θ_2 )^2   =r_1 ^2 +r_2 ^2 −2r_1 r_2 (cos θ_1 cos θ_2 +sin θ_1 sin θ_2 )  =∣z_1 ∣^2 +∣z_2 ∣^2 −2∣z_1 ∣∣z_2 ∣cos (θ_1 −θ_2 ) .
(r1cosθ1r2cosθ2)2+(r1sinθ1r2sinθ2)2=r12+r222r1r2(cosθ1cosθ2+sinθ1sinθ2)=∣z12+z222z1∣∣z2cos(θ1θ2).
Commented by Tinkutara last updated on 10/Aug/17
Thank you very much Sir!
ThankyouverymuchSir!

Leave a Reply

Your email address will not be published. Required fields are marked *