Prove-that-z-1-z-2-z-1-z-2-arg-z-1-arg-z-2-pi-2- Tinku Tara June 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 19350 by Tinkutara last updated on 10/Aug/17 Provethat∣z1+z2∣=∣z1−z2∣⇔arg(z1)−arg(z2)=π2 Answered by ajfour last updated on 10/Aug/17 ⇒∣z1+z2∣2=∣z1−z2∣2z12+z22+2Re(z1z¯2)=z12+z22−2Re(z1z¯2)⇒Re(z1z¯2)=0Re[(x1+iy1)(x2−iy2)]=0⇒x1x2=−y1y2⇒y2x2=−x1y1⇒tan[arg(z2)]=−1tan[arg(z1)]⇒tanθ1tanθ2+1=0andastan(θ1−θ2)=tanθ1−tanθ21+tanθ1tanθ2⇒θ1−θ2=π2arg(z1)−arg(z2)=π2. Commented by Tinkutara last updated on 10/Aug/17 ThankyouverymuchSir! Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-84884Next Next post: Question-150421 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.