Menu Close

Prove-that-z-1-z-2-z-1-z-2-arg-z-1-arg-z-2-pi-2-




Question Number 19350 by Tinkutara last updated on 10/Aug/17
Prove that ∣z_1  + z_2 ∣ = ∣z_1  − z_2 ∣ ⇔  arg(z_1 ) − arg(z_2 ) = (π/2)
Provethatz1+z2=z1z2arg(z1)arg(z2)=π2
Answered by ajfour last updated on 10/Aug/17
⇒ ∣z_1 +z_2 ∣^2 =∣z_1 −z_2 ∣^2   z_1 ^2 +z_2 ^2 +2Re(z_1 z_2 ^� )=z_1 ^2 +z_2 ^2 −2Re(z_1 z_2 ^� )  ⇒ Re(z_1 z_2 ^� )=0    Re[(x_1 +iy_1 )(x_2 −iy_2 )]=0  ⇒    x_1 x_2 =−y_1 y_2   ⇒  (y_2 /x_2 ) =−(x_1 /y_1 )  ⇒tan [arg(z_2 )]=−(1/(tan [arg(z_1 )]))  ⇒ tan θ_1 tan θ_2 +1=0  and as tan (θ_1 −θ_2 )=((tan θ_1 −tan θ_2 )/(1+tan θ_1 tan θ_2 ))  ⇒   θ_1 −θ_2 =(π/2)        arg(z_1 )−arg(z_2 )= (π/2) .
z1+z22=∣z1z22z12+z22+2Re(z1z¯2)=z12+z222Re(z1z¯2)Re(z1z¯2)=0Re[(x1+iy1)(x2iy2)]=0x1x2=y1y2y2x2=x1y1tan[arg(z2)]=1tan[arg(z1)]tanθ1tanθ2+1=0andastan(θ1θ2)=tanθ1tanθ21+tanθ1tanθ2θ1θ2=π2arg(z1)arg(z2)=π2.
Commented by Tinkutara last updated on 10/Aug/17
Thank you very much Sir!
ThankyouverymuchSir!

Leave a Reply

Your email address will not be published. Required fields are marked *