Menu Close

Prove-that-z-2-1-z-2-1-i-tan-where-z-cos-i-sin-




Question Number 54543 by Tawa1 last updated on 05/Feb/19
Prove that:   ((z^2  − 1)/(z^2  + 1))  =  i tan(θ)  where     z  =  cos(θ) + i sin(θ)
Provethat:z21z2+1=itan(θ)wherez=cos(θ)+isin(θ)
Commented by maxmathsup by imad last updated on 06/Feb/19
we have z =e^(iθ)  ⇒((z^2 −1)/(z^2 +1)) =((e^(2iθ) −1)/(e^(2iθ)  +1)) =((e^(iθ)  −e^(−iθ) )/(e^(iθ)  +e^(−iθ) )) =i (((e^(iθ)  −e^(−iθ) )/(2i))/((e^(iθ)  +e^(−iθ) )/2)) =i ((sinθ)/(cosθ)) =itanθ
wehavez=eiθz21z2+1=e2iθ1e2iθ+1=eiθeiθeiθ+eiθ=ieiθeiθ2ieiθ+eiθ2=isinθcosθ=itanθ
Answered by tanmay.chaudhury50@gmail.com last updated on 05/Feb/19
((z^2 −1)/(z^2 +1))  =((z−(1/z))/(z+(1/z)))  z=cosθ+isinθ=e^(iθ)   (1/z)=(1/e^(iθ) )=e^(−iθ) =cos(−θ)+isin(−θ)=cosθ−isinθ  so   ((z−(1/z))/(z+(1/z)))=((2isinθ)/(2cosθ))=itanθ
z21z2+1=z1zz+1zz=cosθ+isinθ=eiθ1z=1eiθ=eiθ=cos(θ)+isin(θ)=cosθisinθsoz1zz+1z=2isinθ2cosθ=itanθ
Commented by Tawa1 last updated on 05/Feb/19
God bless you sir
Godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *