Menu Close

prove-that-z-gt-Re-z-Im-z-2-z-C-




Question Number 192126 by universe last updated on 08/May/23
    prove that        ∣z∣ > ((∣Re(z)∣ +∣Im(z)∣)/2)  ,   ∀z∈C
provethatz>Re(z)+Im(z)2,zC
Commented by York12 last updated on 09/May/23
sir how can I reach you out , I need to ask several questions
sirhowcanIreachyouout,Ineedtoaskseveralquestions
Answered by AST last updated on 08/May/23
Let z=x+yi;Re(z)=((z+z^− )/2);Im(z)=((z−z^− )/(2i))=(((z−z^− )i)/(−2))  ⇒∣Re(z)∣=∣x∣;∣Im(z)∣=((∣z−z^− ∣)/2)=∣y∣;∣z∣=(√(x^2 +y^2 ))  Required to prove (√(x^2 +y^2 ))>((∣x∣+∣y∣)/2)  ≡x^2 +y^2 >((∣x∣^2 +∣y∣^2 +2∣x∣∣y∣)/4)≡3(x^2 +y^2 )>2∣x∣∣y∣  It is known that x^2 +y^2 ≥2(√(x^2 y^2 ))=2∣x∣∣y∣  Hence, 3(x^2 +y^2 )>2∣x∣∣y∣⇔∣z∣>((∣Re(z)∣+∣Im(z)∣)/2)
Letz=x+yi;Re(z)=z+z2;Im(z)=zz2i=(zz)i2⇒∣Re(z)∣=∣x;Im(z)∣=zz2=∣y;z∣=x2+y2Requiredtoprovex2+y2>x+y2x2+y2>x2+y2+2x∣∣y43(x2+y2)>2x∣∣yItisknownthatx2+y22x2y2=2x∣∣yHence,3(x2+y2)>2x∣∣y∣⇔∣z∣>Re(z)+Im(z)2
Answered by mehdee42 last updated on 08/May/23
let : z=a+ib  ∥z∥=(√(a^2 +b^2 ))≥(√a^2 )=∣a∣   (i)  ∥z∥=(√(a^2 +b^2 ))≥(√b^2 )=∣b∣   (ii)  (i)+(ii)⇒2∥z∥>∣a∣+∣b∣ ⇒∥z∥>((∣a∣+∣b∣)/2) ✓
let:z=a+ibz∥=a2+b2a2=∣a(i)z∥=a2+b2b2=∣b(ii)(i)+(ii)2z∥>∣a+b⇒∥z∥>a+b2

Leave a Reply

Your email address will not be published. Required fields are marked *