Question Number 45585 by pieroo last updated on 14/Oct/18
$$\mathrm{prove}\:\mathrm{that1}^{\mathrm{3}} +\mathrm{2}^{\mathrm{3}} +\mathrm{3}^{\mathrm{3}} +…+\mathrm{n}^{\mathrm{3}} =\frac{\mathrm{n}^{\mathrm{2}} \left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{4}}\:\mathrm{for}\:\mathrm{every} \\ $$$$\mathrm{natural}\:\mathrm{number}\:\boldsymbol{\mathrm{n}} \\ $$
Commented by maxmathsup by imad last updated on 14/Oct/18
$${let}\:{p}\left({x}\right)=\frac{{x}^{\mathrm{2}} \left({x}−\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{4}}\:\:{we}\:{have}\:{p}\left({x}+\mathrm{1}\right)−{p}\left({x}\right)=\frac{\left({x}+\mathrm{1}\right)^{\mathrm{2}} {x}^{\mathrm{2}} }{\mathrm{4}}\:−\frac{{x}^{\mathrm{2}} \left({x}−\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{4}} \\ $$$$=\frac{{x}^{\mathrm{2}} }{\mathrm{4}}\left\{\left({x}+\mathrm{1}\right)^{\mathrm{2}} −\left({x}−\mathrm{1}\right)^{\mathrm{2}} \right\}=\frac{{x}^{\mathrm{2}} }{\mathrm{4}}\left\{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}−{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{1}\right\}={x}^{\mathrm{3}} \:\:\Rightarrow \\ $$$$\sum_{{k}=\mathrm{1}} ^{{n}} \left({p}\left({k}+\mathrm{1}\right)−{p}\left({k}\right)\right)=\sum_{{k}=\mathrm{1}} ^{{n}} {k}^{\mathrm{3}} \:\:\Rightarrow\sum_{{k}=\mathrm{1}} ^{{n}} {k}^{\mathrm{3}} \:={p}\left({n}+\mathrm{1}\right)−{p}\left(\mathrm{1}\right. \\ $$$$=\frac{\left({n}+\mathrm{1}\right)^{\mathrm{2}} {n}^{\mathrm{2}} }{\mathrm{4}}\:\:\:=\frac{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{4}}\:. \\ $$
Commented by pieroo last updated on 14/Oct/18
$$\mathrm{thanks}\:\mathrm{very}\:\mathrm{much}\:\mathrm{sir}. \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 14/Oct/18
Commented by tanmay.chaudhury50@gmail.com last updated on 14/Oct/18
Commented by tanmay.chaudhury50@gmail.com last updated on 14/Oct/18
Commented by tanmay.chaudhury50@gmail.com last updated on 14/Oct/18
Answered by tanmay.chaudhury50@gmail.com last updated on 14/Oct/18
$${another}\:{general}\:{method}… \\ $$$${S}_{{r}} =\mathrm{1}^{{r}} +\mathrm{2}^{{r}} +\mathrm{3}^{{r}} +…+{n}^{{r}} \\ $$$${formuls}\:{is}\:{S}_{{r}} ={r}\int{S}_{{r}−\mathrm{1}} {dn}+{nB}_{{r}} \\ $$$${now}\:{if}\:{we}\:{know}\:{s}_{\mathrm{1}} =\mathrm{1}+\mathrm{2}+\mathrm{3}+…+{n} \\ $$$${we}\:{can}\:{find}\:{S}_{\mathrm{2}} =\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} +…+{n}^{\mathrm{2}} \\ $$$${S}_{\mathrm{3}} =\mathrm{1}^{\mathrm{3}} +\mathrm{2}^{\mathrm{3}} +\mathrm{3}^{\mathrm{3}} +..+{n}^{\mathrm{3}} \\ $$$${S}_{\mathrm{40}} =\mathrm{1}^{\mathrm{40}} +\mathrm{2}^{\mathrm{40}} +\mathrm{3}^{\mathrm{40}} +…+{n}^{\mathrm{40}} \\ $$$${now}\:{s}_{\mathrm{1}} =\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}=\frac{{n}^{\mathrm{2}} }{\mathrm{2}}+\frac{{n}}{\mathrm{2}} \\ $$$${S}_{{r}} ={r}\int{S}_{{r}−\mathrm{1}} {dn}+{nB}_{{r}} \\ $$$${so}\:{S}_{\mathrm{2}} =\mathrm{2}\int{S}_{\mathrm{1}} {dn}+{nB}_{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}\int\left(\frac{{n}^{\mathrm{2}} }{\mathrm{2}}+\frac{{n}}{\mathrm{2}}\right){dn}+{nB}_{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}\left[\frac{{n}^{\mathrm{3}} }{\mathrm{6}}+\frac{{n}^{\mathrm{2}} }{\mathrm{4}}\right]+{n}×\frac{\mathrm{1}}{\mathrm{6}}\:\:\:{B}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{6}}\:\left({see}\:{table}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\frac{{n}^{\mathrm{3}} }{\mathrm{3}}+\frac{{n}^{\mathrm{2}} }{\mathrm{2}}+\frac{{n}}{\mathrm{6}}=\frac{\mathrm{2}{n}^{\mathrm{3}} +\mathrm{3}{n}^{\mathrm{2}} +{n}}{\mathrm{6}} \\ $$$$\:\:\:\:\:\:\:=\frac{{n}\left(\mathrm{2}{n}^{\mathrm{2}} +\mathrm{3}{n}+\mathrm{1}\right)}{\mathrm{6}}=\frac{{n}}{\mathrm{6}}\left(\mathrm{2}{n}^{\mathrm{2}} +\mathrm{2}{n}+{n}+\mathrm{1}\right) \\ $$$$=\frac{{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{6}} \\ $$$${using}\:{this}\:{we}\:{can}\:{find}\:{S}_{\mathrm{3}} =\mathrm{3}\int{S}_{\mathrm{2}} {dn}+{nB}_{\mathrm{3}} \\ $$$${S}_{\mathrm{3}} =\mathrm{3}\int\frac{{n}^{\mathrm{3}} }{\mathrm{3}}+\frac{{n}^{\mathrm{2}} }{\mathrm{2}}+\frac{{n}}{\mathrm{6}}+{n}×\mathrm{0}\:\:\:\:{B}_{\mathrm{3}} =\mathrm{0} \\ $$$$\:\:\:\:\:\:=\mathrm{3}\left(\frac{{n}^{\mathrm{4}} }{\mathrm{12}}+\frac{{n}^{\mathrm{3}} }{\mathrm{6}}+\frac{{n}^{\mathrm{2}} }{\mathrm{12}}\right)=\frac{{n}^{\mathrm{4}} }{\mathrm{4}}+\frac{{n}^{\mathrm{3}} }{\mathrm{2}}+\frac{{n}^{\mathrm{2}} }{\mathrm{4}}=\frac{{n}^{\mathrm{2}} }{\mathrm{4}}\left({n}^{\mathrm{2}} +\mathrm{2}{n}+\mathrm{1}\right) \\ $$$$\:\:\:\:=\frac{{n}^{\mathrm{2}} }{\mathrm{4}}\left({n}+\mathrm{1}\right)^{\mathrm{2}} =\left\{\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}\right\}^{\mathrm{2}} \:\:\:{is}\:{the}\:{answer} \\ $$
Commented by pieroo last updated on 14/Oct/18
$$\mathrm{wow},\:\mathrm{i}\:\mathrm{love}\:\mathrm{this}\: \\ $$
Commented by pieroo last updated on 14/Oct/18
$$\mathrm{Sir}\:\mathrm{thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much},\:\mathrm{but}\:\mathrm{please}\:\mathrm{help}\:\mathrm{me}\:\mathrm{with} \\ $$$$\mathrm{Question}\:\mathrm{number}\:\mathrm{45353} \\ $$