Menu Close

prove-that1-3-2-3-3-3-n-3-n-2-n-1-2-4-for-every-natural-number-n-




Question Number 45585 by pieroo last updated on 14/Oct/18
prove that1^3 +2^3 +3^3 +...+n^3 =((n^2 (n+1)^2 )/4) for every  natural number n
provethat13+23+33++n3=n2(n+1)24foreverynaturalnumbern
Commented by maxmathsup by imad last updated on 14/Oct/18
let p(x)=((x^2 (x−1)^2 )/4)  we have p(x+1)−p(x)=(((x+1)^2 x^2 )/4) −((x^2 (x−1)^2 )/4)  =(x^2 /4){(x+1)^2 −(x−1)^2 }=(x^2 /4){x^2 +2x+1−x^2 +2x−1}=x^3   ⇒  Σ_(k=1) ^n (p(k+1)−p(k))=Σ_(k=1) ^n k^3   ⇒Σ_(k=1) ^n k^3  =p(n+1)−p(1  =(((n+1)^2 n^2 )/4)   =((n^2 (n+1)^2 )/4) .
letp(x)=x2(x1)24wehavep(x+1)p(x)=(x+1)2x24x2(x1)24=x24{(x+1)2(x1)2}=x24{x2+2x+1x2+2x1}=x3k=1n(p(k+1)p(k))=k=1nk3k=1nk3=p(n+1)p(1=(n+1)2n24=n2(n+1)24.
Commented by pieroo last updated on 14/Oct/18
thanks very much sir.
thanksverymuchsir.
Commented by tanmay.chaudhury50@gmail.com last updated on 14/Oct/18
Commented by tanmay.chaudhury50@gmail.com last updated on 14/Oct/18
Commented by tanmay.chaudhury50@gmail.com last updated on 14/Oct/18
Commented by tanmay.chaudhury50@gmail.com last updated on 14/Oct/18
Answered by tanmay.chaudhury50@gmail.com last updated on 14/Oct/18
another general method...  S_r =1^r +2^r +3^r +...+n^r   formuls is S_r =r∫S_(r−1) dn+nB_r   now if we know s_1 =1+2+3+...+n  we can find S_2 =1^2 +2^2 +3^2 +...+n^2   S_3 =1^3 +2^3 +3^3 +..+n^3   S_(40) =1^(40) +2^(40) +3^(40) +...+n^(40)   now s_1 =((n(n+1))/2)=(n^2 /2)+(n/2)  S_r =r∫S_(r−1) dn+nB_r   so S_2 =2∫S_1 dn+nB_2               =2∫((n^2 /2)+(n/2))dn+nB_2               =2[(n^3 /6)+(n^2 /4)]+n×(1/6)   B_2 =(1/6) (see table)              =(n^3 /3)+(n^2 /2)+(n/6)=((2n^3 +3n^2 +n)/6)         =((n(2n^2 +3n+1))/6)=(n/6)(2n^2 +2n+n+1)  =((n(n+1)(2n+1))/6)  using this we can find S_3 =3∫S_2 dn+nB_3   S_3 =3∫(n^3 /3)+(n^2 /2)+(n/6)+n×0    B_3 =0        =3((n^4 /(12))+(n^3 /6)+(n^2 /(12)))=(n^4 /4)+(n^3 /2)+(n^2 /4)=(n^2 /4)(n^2 +2n+1)      =(n^2 /4)(n+1)^2 ={((n(n+1))/2)}^2    is the answer
anothergeneralmethodSr=1r+2r+3r++nrformulsisSr=rSr1dn+nBrnowifweknows1=1+2+3++nwecanfindS2=12+22+32++n2S3=13+23+33+..+n3S40=140+240+340++n40nows1=n(n+1)2=n22+n2Sr=rSr1dn+nBrsoS2=2S1dn+nB2=2(n22+n2)dn+nB2=2[n36+n24]+n×16B2=16(seetable)=n33+n22+n6=2n3+3n2+n6=n(2n2+3n+1)6=n6(2n2+2n+n+1)=n(n+1)(2n+1)6usingthiswecanfindS3=3S2dn+nB3S3=3n33+n22+n6+n×0B3=0=3(n412+n36+n212)=n44+n32+n24=n24(n2+2n+1)=n24(n+1)2={n(n+1)2}2istheanswer
Commented by pieroo last updated on 14/Oct/18
wow, i love this
wow,ilovethis
Commented by pieroo last updated on 14/Oct/18
Sir thank you very much, but please help me with  Question number 45353
Sirthankyouverymuch,butpleasehelpmewithQuestionnumber45353

Leave a Reply

Your email address will not be published. Required fields are marked *