Menu Close

Prove-the-convergence-of-each-of-the-following-sequence-i-n-1-n-n-1-ii-1-2-1-n-n-1-iii-n-1-n-n-1-




Question Number 29607 by tawa tawa last updated on 10/Feb/18
Prove the convergence of each of the following sequence  (i)  {((n − 1)/n)}_(n = 1) ^∞         (ii)   {(1/( (2)^(1/n) ))}_(n = 1) ^∞       (iii)    {((n + 1)/n)}_(n = 1) ^∞
$$\mathrm{Prove}\:\mathrm{the}\:\mathrm{convergence}\:\mathrm{of}\:\mathrm{each}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{sequence} \\ $$$$\left(\mathrm{i}\right)\:\:\left\{\frac{\mathrm{n}\:−\:\mathrm{1}}{\mathrm{n}}\right\}_{\mathrm{n}\:=\:\mathrm{1}} ^{\infty} \:\:\:\:\:\:\:\:\left(\mathrm{ii}\right)\:\:\:\left\{\frac{\mathrm{1}}{\:\sqrt[{\mathrm{n}}]{\mathrm{2}}}\right\}_{\mathrm{n}\:=\:\mathrm{1}} ^{\infty} \:\:\:\:\:\:\left(\mathrm{iii}\right)\:\:\:\:\left\{\frac{\mathrm{n}\:+\:\mathrm{1}}{\mathrm{n}}\right\}_{\mathrm{n}\:=\:\mathrm{1}} ^{\infty} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *