Menu Close

prove-the-convergence-of-n-n-such-that-tan-1-n-n-2-n-1-0-




Question Number 127501 by slahadjb last updated on 30/Dec/20
prove the convergence of (α_n )_(n ) such that   tan^(−1) ((α_n /n))−2α_n +1=0
$${prove}\:{the}\:{convergence}\:{of}\:\left(\alpha_{{n}} \right)_{{n}\:} {such}\:{that}\: \\ $$$$\mathrm{tan}^{−\mathrm{1}} \left(\frac{\alpha_{{n}} }{{n}}\right)−\mathrm{2}\alpha_{{n}} +\mathrm{1}=\mathrm{0} \\ $$
Answered by mindispower last updated on 31/Dec/20
⇒2a_n =1+tan^− ((a_n /n))⇒a_n ∈[−(π/4)+(1/2),(π/4)+(1/2)]  bounded⇒lim_(n→∞) (a_n /n)→0  ⇒tan^− ((α_n /n))+1⇒1sinceg: x→tan^(−1) (x)+1 is continus  2a_n =g((a_n /n)),2a_n →g(0)=1  a_n →(1/2)
$$\Rightarrow\mathrm{2}{a}_{{n}} =\mathrm{1}+{tan}^{−} \left(\frac{{a}_{{n}} }{{n}}\right)\Rightarrow{a}_{{n}} \in\left[−\frac{\pi}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{2}},\frac{\pi}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{2}}\right] \\ $$$${bounded}\Rightarrow\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{{a}_{{n}} }{{n}}\rightarrow\mathrm{0} \\ $$$$\Rightarrow{tan}^{−} \left(\frac{\alpha_{{n}} }{{n}}\right)+\mathrm{1}\Rightarrow\mathrm{1}{sinceg}:\:{x}\rightarrow\mathrm{tan}^{−\mathrm{1}} \left({x}\right)+\mathrm{1}\:{is}\:{continus} \\ $$$$\mathrm{2}{a}_{{n}} ={g}\left(\frac{{a}_{{n}} }{{n}}\right),\mathrm{2}{a}_{{n}} \rightarrow{g}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$${a}_{{n}} \rightarrow\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Commented by slahadjb last updated on 31/Dec/20
Thank you. Can we prove that (α_n ) is monotone ?
$${Thank}\:{you}.\:{Can}\:{we}\:{prove}\:{that}\:\left(\alpha_{{n}} \right)\:{is}\:{monotone}\:? \\ $$
Commented by mindispower last updated on 31/Dec/20
2a_n =1+tan^− ((a_n /n))  1=2a_n −tan^− (((an)/n))  f(x)=2x−tan^− ((x/n)),  2a_n −tan^− ((a_n /(n+1)))=1+tan^− ((a_n /n))−tan^− ((a_n /(n+1)))>1  a_n >0,∀n≥4  ≥2a_(n+1) −tan^− ((a_(n+1) /(n+1)))=f(a_(n+1) )  f(a_n )≥f(a_(n+1) )⇒a_n >a_(n+1)   n>4,causef  is increase
$$\mathrm{2}{a}_{{n}} =\mathrm{1}+{tan}^{−} \left(\frac{{a}_{{n}} }{{n}}\right) \\ $$$$\mathrm{1}=\mathrm{2}{a}_{{n}} −{tan}^{−} \left(\frac{{an}}{{n}}\right) \\ $$$${f}\left({x}\right)=\mathrm{2}{x}−{tan}^{−} \left(\frac{{x}}{{n}}\right), \\ $$$$\mathrm{2}{a}_{{n}} −{tan}^{−} \left(\frac{{a}_{{n}} }{{n}+\mathrm{1}}\right)=\mathrm{1}+{tan}^{−} \left(\frac{{a}_{{n}} }{{n}}\right)−{tan}^{−} \left(\frac{{a}_{{n}} }{{n}+\mathrm{1}}\right)>\mathrm{1} \\ $$$${a}_{{n}} >\mathrm{0},\forall{n}\geqslant\mathrm{4} \\ $$$$\geqslant\mathrm{2}{a}_{{n}+\mathrm{1}} −{tan}^{−} \left(\frac{{a}_{{n}+\mathrm{1}} }{{n}+\mathrm{1}}\right)={f}\left({a}_{{n}+\mathrm{1}} \right) \\ $$$${f}\left({a}_{{n}} \right)\geqslant{f}\left({a}_{{n}+\mathrm{1}} \right)\Rightarrow{a}_{{n}} >{a}_{{n}+\mathrm{1}} \:\:{n}>\mathrm{4},{causef}\:\:{is}\:{increase} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by slahadjb last updated on 31/Dec/20
thank you so much.
$${thank}\:{you}\:{so}\:{much}. \\ $$
Commented by mindispower last updated on 31/Dec/20
pleasur
$${pleasur} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *