Menu Close

prove-the-convergence-of-n-n-such-that-tan-1-n-n-2-n-1-0-




Question Number 127501 by slahadjb last updated on 30/Dec/20
prove the convergence of (α_n )_(n ) such that   tan^(−1) ((α_n /n))−2α_n +1=0
provetheconvergenceof(αn)nsuchthattan1(αnn)2αn+1=0
Answered by mindispower last updated on 31/Dec/20
⇒2a_n =1+tan^− ((a_n /n))⇒a_n ∈[−(π/4)+(1/2),(π/4)+(1/2)]  bounded⇒lim_(n→∞) (a_n /n)→0  ⇒tan^− ((α_n /n))+1⇒1sinceg: x→tan^(−1) (x)+1 is continus  2a_n =g((a_n /n)),2a_n →g(0)=1  a_n →(1/2)
2an=1+tan(ann)an[π4+12,π4+12]boundedlimnann0tan(αnn)+11sinceg:xtan1(x)+1iscontinus2an=g(ann),2ang(0)=1an12
Commented by slahadjb last updated on 31/Dec/20
Thank you. Can we prove that (α_n ) is monotone ?
Thankyou.Canweprovethat(αn)ismonotone?
Commented by mindispower last updated on 31/Dec/20
2a_n =1+tan^− ((a_n /n))  1=2a_n −tan^− (((an)/n))  f(x)=2x−tan^− ((x/n)),  2a_n −tan^− ((a_n /(n+1)))=1+tan^− ((a_n /n))−tan^− ((a_n /(n+1)))>1  a_n >0,∀n≥4  ≥2a_(n+1) −tan^− ((a_(n+1) /(n+1)))=f(a_(n+1) )  f(a_n )≥f(a_(n+1) )⇒a_n >a_(n+1)   n>4,causef  is increase
2an=1+tan(ann)1=2antan(ann)f(x)=2xtan(xn),2antan(ann+1)=1+tan(ann)tan(ann+1)>1an>0,n42an+1tan(an+1n+1)=f(an+1)f(an)f(an+1)an>an+1n>4,causefisincrease
Commented by slahadjb last updated on 31/Dec/20
thank you so much.
thankyousomuch.
Commented by mindispower last updated on 31/Dec/20
pleasur
pleasur

Leave a Reply

Your email address will not be published. Required fields are marked *