Question Number 19292 by Tinkutara last updated on 08/Aug/17
$$\mathrm{Prove}\:\mathrm{the}\:\mathrm{equality} \\ $$$$\mathrm{sin}\:\frac{\pi}{\mathrm{2}{n}}\:\mathrm{sin}\:\frac{\mathrm{2}\pi}{\mathrm{2}{n}}\:…\:\mathrm{sin}\:\frac{\left({n}\:−\:\mathrm{1}\right)\pi}{\mathrm{2}{n}}\:=\:\frac{\sqrt{{n}}}{\mathrm{2}^{{n}−\mathrm{1}} }\:. \\ $$
Commented by prakash jain last updated on 09/Aug/17
$$\mathrm{you}\:\mathrm{can}\:\mathrm{try}\:\mathrm{with}\:\mathrm{the}\:\mathrm{following} \\ $$$$\mathrm{substitution} \\ $$$$\mathrm{sin}\:\frac{\pi}{\mathrm{2}{n}}=\frac{{e}^{\frac{{i}\pi}{\mathrm{2}{n}}} −{e}^{−\frac{{i}\pi}{\mathrm{2}{n}}} }{\mathrm{2}{i}} \\ $$
Answered by Tinkutara last updated on 23/Aug/17
$${x}^{\mathrm{2}{n}} −\mathrm{1}=\left({x}−\mathrm{1}\right)\left({x}−\alpha\right)\left({x}−\alpha^{\mathrm{2}} \right)….\left({x}−\alpha^{\mathrm{2}{n}−\mathrm{1}} \right)\:\mathrm{where}\:\alpha\:=\:{e}^{\frac{\mathrm{2}\pi}{\mathrm{2}{n}}{i}} \:=\:{e}^{\frac{\pi}{{n}}{i}} \\ $$$$\mathrm{On}\:\mathrm{differentiating}\:\mathrm{both}\:\mathrm{sides}, \\ $$$$\mathrm{2}{nx}^{\mathrm{2}{n}−\mathrm{1}} =\left({x}−\alpha\right)\left({x}−\alpha^{\mathrm{2}} \right)….\left({x}−\alpha^{\mathrm{2}{n}−\mathrm{1}} \right) \\ $$$$+\left({x}−\mathrm{1}\right)\left({x}−\alpha^{\mathrm{2}} \right)\left({x}−\alpha^{\mathrm{3}} \right)….\left({x}−\alpha^{\mathrm{2}{n}−\mathrm{1}} \right) \\ $$$$+\left({x}−\mathrm{1}\right)\left({x}−\alpha\right)\left({x}−\alpha^{\mathrm{3}} \right)….+…. \\ $$$$\mathrm{Put}\:{x}\:=\:\mathrm{1} \\ $$$$\mathrm{2}{n}=\left(\mathrm{1}−\alpha\right)\left(\mathrm{1}−\alpha^{\mathrm{2}} \right)\left(\mathrm{1}−\alpha^{\mathrm{3}} \right)….\left(\mathrm{1}−\alpha^{\mathrm{2}{n}−\mathrm{1}} \right) \\ $$$$\mathrm{Since}\:\mathrm{1}\:−\:{e}^{{i}\theta} \:=\:\mathrm{2}\:\mathrm{sin}\:\frac{\theta}{\mathrm{2}}\:{e}^{\left(\frac{\theta}{\mathrm{2}}\:−\:\frac{\pi}{\mathrm{2}}\right){i}} \\ $$$$\mathrm{2}{n}=\left(\mathrm{1}−{e}^{\frac{\pi}{{n}}{i}} \right)\left(\mathrm{1}−{e}^{\frac{\mathrm{2}\pi}{{n}}{i}} \right)\left(\mathrm{1}−{e}^{\frac{\mathrm{3}\pi}{{n}}{i}} \right)….\left(\mathrm{1}−{e}^{\frac{\pi}{{n}}\left(\mathrm{2}{n}−\mathrm{1}\right){i}} \right) \\ $$$$=\mathrm{2}^{\mathrm{2}{n}−\mathrm{1}} \mathrm{sin}\frac{\pi}{\mathrm{2}{n}}\mathrm{sin}\frac{\mathrm{2}\pi}{\mathrm{2}{n}}….\mathrm{sin}\frac{\left(\mathrm{2}{n}−\mathrm{1}\right)\pi}{\mathrm{2}{n}}{e}^{\left(\frac{\pi}{\mathrm{2}{n}}−\frac{\pi}{\mathrm{2}}\right){i}} {e}^{\left(\frac{\mathrm{2}\pi}{\mathrm{2}{n}}−\frac{\pi}{\mathrm{2}}\right){i}} ….{e}^{\left(\frac{\pi\left(\mathrm{2}{n}−\mathrm{1}\right)}{\mathrm{2}{n}}−\frac{\pi}{\mathrm{2}}\right){i}} \\ $$$$=\mathrm{2}^{\mathrm{2}{n}−\mathrm{1}} \mathrm{sin}\frac{\pi}{\mathrm{2}{n}}\mathrm{sin}\frac{\mathrm{2}\pi}{\mathrm{2}{n}}….\mathrm{sin}\frac{\left(\mathrm{2}{n}−\mathrm{1}\right)\pi}{\mathrm{2}{n}}{e}^{{i}\left[\frac{\pi}{\mathrm{2}{n}}\left(\frac{\mathrm{2}{n}\left(\mathrm{2}{n}−\mathrm{1}\right)}{\mathrm{2}}\right)−\left(\mathrm{2}{n}−\mathrm{1}\right)\frac{\pi}{\mathrm{2}}\right]} \\ $$$$\mathrm{2}{n}=\mathrm{2}^{\mathrm{2}{n}−\mathrm{1}} \mathrm{sin}\frac{\pi}{\mathrm{2}{n}}\mathrm{sin}\frac{\mathrm{2}\pi}{\mathrm{2}{n}}….\mathrm{sin}\frac{\left(\mathrm{2}{n}−\mathrm{1}\right)\pi}{\mathrm{2}{n}}{e}^{\mathrm{0}} \\ $$$$\frac{\mathrm{2}{n}}{\mathrm{2}^{\mathrm{2}{n}−\mathrm{1}} }=\mathrm{sin}\frac{\pi}{\mathrm{2}{n}}\mathrm{sin}\frac{\mathrm{2}\pi}{\mathrm{2}{n}}….\mathrm{sin}\frac{\left({n}−\mathrm{1}\right)\pi}{\mathrm{2}{n}}\mathrm{sin}\frac{{n}\pi}{\mathrm{2}{n}}….\mathrm{sin}\frac{\pi}{\mathrm{2}{n}} \\ $$$$\frac{{n}}{\mathrm{2}^{\mathrm{2}{n}−\mathrm{2}} }\:=\:\mathrm{sin}^{\mathrm{2}} \:\frac{\pi}{\mathrm{2}{n}}\:\mathrm{sin}^{\mathrm{2}} \:\frac{\mathrm{2}\pi}{\mathrm{2}{n}}\:….\:\mathrm{sin}^{\mathrm{2}} \:\frac{\left({n}−\mathrm{1}\right)\pi}{\mathrm{2}{n}} \\ $$$$\frac{\sqrt{{n}}}{\mathrm{2}^{{n}−\mathrm{1}} }\:=\:\mathrm{sin}\:\frac{\pi}{\mathrm{2}{n}}\:\mathrm{sin}\:\frac{\mathrm{2}\pi}{\mathrm{2}{n}}\:….\:\mathrm{sin}\:\frac{\left({n}−\mathrm{1}\right)\pi}{\mathrm{2}{n}} \\ $$