Menu Close

Prove-the-equality-sin-pi-2n-sin-2pi-2n-sin-n-1-pi-2n-n-2-n-1-




Question Number 19292 by Tinkutara last updated on 08/Aug/17
Prove the equality  sin (π/(2n)) sin ((2π)/(2n)) ... sin (((n − 1)π)/(2n)) = ((√n)/2^(n−1) ) .
Provetheequalitysinπ2nsin2π2nsin(n1)π2n=n2n1.
Commented by prakash jain last updated on 09/Aug/17
you can try with the following  substitution  sin (π/(2n))=((e^((iπ)/(2n)) −e^(−((iπ)/(2n))) )/(2i))
youcantrywiththefollowingsubstitutionsinπ2n=eiπ2neiπ2n2i
Answered by Tinkutara last updated on 23/Aug/17
x^(2n) −1=(x−1)(x−α)(x−α^2 )....(x−α^(2n−1) ) where α = e^(((2π)/(2n))i)  = e^((π/n)i)   On differentiating both sides,  2nx^(2n−1) =(x−α)(x−α^2 )....(x−α^(2n−1) )  +(x−1)(x−α^2 )(x−α^3 )....(x−α^(2n−1) )  +(x−1)(x−α)(x−α^3 )....+....  Put x = 1  2n=(1−α)(1−α^2 )(1−α^3 )....(1−α^(2n−1) )  Since 1 − e^(iθ)  = 2 sin (θ/2) e^(((θ/2) − (π/2))i)   2n=(1−e^((π/n)i) )(1−e^(((2π)/n)i) )(1−e^(((3π)/n)i) )....(1−e^((π/n)(2n−1)i) )  =2^(2n−1) sin(π/(2n))sin((2π)/(2n))....sin(((2n−1)π)/(2n))e^(((π/(2n))−(π/2))i) e^((((2π)/(2n))−(π/2))i) ....e^((((π(2n−1))/(2n))−(π/2))i)   =2^(2n−1) sin(π/(2n))sin((2π)/(2n))....sin(((2n−1)π)/(2n))e^(i[(π/(2n))(((2n(2n−1))/2))−(2n−1)(π/2)])   2n=2^(2n−1) sin(π/(2n))sin((2π)/(2n))....sin(((2n−1)π)/(2n))e^0   ((2n)/2^(2n−1) )=sin(π/(2n))sin((2π)/(2n))....sin(((n−1)π)/(2n))sin((nπ)/(2n))....sin(π/(2n))  (n/2^(2n−2) ) = sin^2  (π/(2n)) sin^2  ((2π)/(2n)) .... sin^2  (((n−1)π)/(2n))  ((√n)/2^(n−1) ) = sin (π/(2n)) sin ((2π)/(2n)) .... sin (((n−1)π)/(2n))
x2n1=(x1)(xα)(xα2).(xα2n1)whereα=e2π2ni=eπniOndifferentiatingbothsides,2nx2n1=(xα)(xα2).(xα2n1)+(x1)(xα2)(xα3).(xα2n1)+(x1)(xα)(xα3).+.Putx=12n=(1α)(1α2)(1α3).(1α2n1)Since1eiθ=2sinθ2e(θ2π2)i2n=(1eπni)(1e2πni)(1e3πni).(1eπn(2n1)i)=22n1sinπ2nsin2π2n.sin(2n1)π2ne(π2nπ2)ie(2π2nπ2)i.e(π(2n1)2nπ2)i=22n1sinπ2nsin2π2n.sin(2n1)π2nei[π2n(2n(2n1)2)(2n1)π2]2n=22n1sinπ2nsin2π2n.sin(2n1)π2ne02n22n1=sinπ2nsin2π2n.sin(n1)π2nsinnπ2n.sinπ2nn22n2=sin2π2nsin22π2n.sin2(n1)π2nn2n1=sinπ2nsin2π2n.sin(n1)π2n

Leave a Reply

Your email address will not be published. Required fields are marked *