Menu Close

prove-the-existence-of-n-integrs-naturals-x-1-x-2-x-n-with-x-i-x-j-for-i-j-and-1-x-1-1-x-2-1-x-n-1-




Question Number 49095 by maxmathsup by imad last updated on 02/Dec/18
prove the existence of n integrs naturals x_1 ,x_2 ,....x_n     with x_i ≠x_j for i≠j  and (1/x_1 ) +(1/x_2 ) +....+(1/x_n ) =1 .
$${prove}\:{the}\:{existence}\:{of}\:{n}\:{integrs}\:{naturals}\:{x}_{\mathrm{1}} ,{x}_{\mathrm{2}} ,….{x}_{{n}} \:\:\:\:{with}\:{x}_{{i}} \neq{x}_{{j}} {for}\:{i}\neq{j} \\ $$$${and}\:\frac{\mathrm{1}}{{x}_{\mathrm{1}} }\:+\frac{\mathrm{1}}{{x}_{\mathrm{2}} }\:+….+\frac{\mathrm{1}}{{x}_{{n}} }\:=\mathrm{1}\:. \\ $$
Answered by kwonjun1202 last updated on 03/Dec/18
1=0.5+0.25+0.125+0.0625+0.003125...  =(5/(10)) +(5^2 /(10^2 )) +(5^3 /(10^3 )) +....+((5/(10)))^n  reduce a fraction =(1/2^n )  ∴Σ_(n=1) ^∞  (1/2^n ) =1,
$$\mathrm{1}=\mathrm{0}.\mathrm{5}+\mathrm{0}.\mathrm{25}+\mathrm{0}.\mathrm{125}+\mathrm{0}.\mathrm{0625}+\mathrm{0}.\mathrm{003125}… \\ $$$$=\frac{\mathrm{5}}{\mathrm{10}}\:+\frac{\mathrm{5}^{\mathrm{2}} }{\mathrm{10}^{\mathrm{2}} }\:+\frac{\mathrm{5}^{\mathrm{3}} }{\mathrm{10}^{\mathrm{3}} }\:+….+\left(\frac{\mathrm{5}}{\mathrm{10}}\right)^{{n}} \:{reduce}\:{a}\:{fraction}\:=\frac{\mathrm{1}}{\mathrm{2}^{{n}} } \\ $$$$\therefore\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\:=\mathrm{1},\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *