Menu Close

Prove-the-following-inequalities-1-n-1-2-n-gt-n-for-n-N-n-gt-1-2-sinnx-n-sinx-for-n-N-




Question Number 118712 by 1549442205PVT last updated on 19/Oct/20
Prove the following inequalities:  1)(((n+1)/2))^n >n! for ∀n∈N^∗ ,n>1  2)∣sinnx∣≤n∣sinx∣ for ∀n∈N^∗
Provethefollowinginequalities:1)(n+12)n>n!fornN,n>12)sinnx∣⩽nsinxfornN
Answered by Dwaipayan Shikari last updated on 19/Oct/20
((1+2+3+4+...n)/n)≥(1.2.3.4..n)^(1/n)   ((n(n+1))/(2n))≥(n!)^(1/n)   (((n+1)/2))^n ≥n!  take n>1  ((3/2))^2 ≥2!   (Which is true)  So  (((n+1)/2))^n >n!    (n>1)
1+2+3+4+nn(1.2.3.4..n)1nn(n+1)2n(n!)1n(n+12)nn!taken>1(32)22!(Whichistrue)So(n+12)n>n!(n>1)
Commented by 1549442205PVT last updated on 20/Oct/20
Thank Sir.
ThankSir.
Answered by TANMAY PANACEA last updated on 19/Oct/20
2)applying logic  1≥∣sinnx∣≥0  and 1≥∣sinx∣≥0  but n≥n∣sinx∣≥0  so n∣sinx∣>∣sinnx∣
2)applyinglogic1⩾∣sinnx∣⩾0and1⩾∣sinx∣⩾0butnnsinx∣⩾0sonsinx∣>∣sinnx
Commented by 1549442205PVT last updated on 19/Oct/20
I don′t see logic here,havn′t final  result n∣sinx∣≥∣sin(nx)∣
Idontseelogichere,havntfinalresultnsinx∣⩾∣sin(nx)
Commented by TANMAY PANACEA last updated on 19/Oct/20
ok sir  i am trying
oksiriamtrying
Commented by 1549442205PVT last updated on 20/Oct/20
Thank Sir.
ThankSir.
Answered by mindispower last updated on 19/Oct/20
1)⇔nln(((n+1)/2))≥ln(Π_(k=1) ^n k)  Π_(k=1) ^n (k)≤(((Σ_(k=1) ^n k)/n))^n ,AM−GM  ⇒ln(Π_(k=1) ^n k)≤nln(((Σ_(k=1) ^n k)/n))=nln(((n+1)/2))
1)nln(n+12)ln(nk=1k)nk=1(k)(nk=1kn)n,AMGMln(nk=1k)nln(nk=1kn)=nln(n+12)
Commented by 1549442205PVT last updated on 20/Oct/20
Thank you sir
Thankyousir
Answered by 1549442205PVT last updated on 20/Oct/20
We prove by the induction method  1−For n=2 we obtain the true inequality  2<9/4.Suppose that k!<(((k+1)/2))^k .Then  by the induction hypothesis (k+1)!=  k!(k+1)<(((k+1)/2))^k (k+1).If now we prove  that (((k+1)/2))^k (k+1)<(((k+2)/2))^(k+1) (1)  the theorem is proved because then  (k+1)!<(((k+1)/2))^k (k+1)<(((k+2)/2))^(k+1)   that is our inequality holds true for n=k+1  Inequality(1) can clearly be rewritten  as (((k+2)^(k+1) )/((k+1)^(k+1) ))>(2^(k+1) /2^k )or (1+(1/(k+1)))^(k+1) >2  But the binomial theorem yields  (1+(1/(k+1)))^(k+1) =1+(k+1)(1/(k+1))+...>2  so the inequality (1)holds and thus the   oriinal inequality is proved  2)The inequality is obviously true for  n=1.Assuming that ∣sinkx∣≤k∣sinx∣  ,we prove that ∣sin(k+1)x∣≤(k+1)∣sinx∣  Indeed,using the inequality∣coskx∣≤1  we have ∣sin(k+1)x∣=∣sinkx.cosx+sinxcoskx∣  ≤∣sinkx∣.∣cosx∣+∣sinx∣∣coskx∣≤  ∣sinkx∣+∣sinx∣≤k∣sinx∣+∣sinx∣  =(k+1)∣sinx∣ which shows the required  is true.The proof completed.
Weprovebytheinductionmethod1Forn=2weobtainthetrueinequality2<9/4.Supposethatk!<(k+12)k.Thenbytheinductionhypothesis(k+1)!=k!(k+1)<(k+12)k(k+1).Ifnowweprovethat(k+12)k(k+1)<(k+22)k+1(1)thetheoremisprovedbecausethen(k+1)!<(k+12)k(k+1)<(k+22)k+1thatisourinequalityholdstrueforn=k+1Inequality(1)canclearlyberewrittenas(k+2)k+1(k+1)k+1>2k+12kor(1+1k+1)k+1>2Butthebinomialtheoremyields(1+1k+1)k+1=1+(k+1)1k+1+>2sotheinequality(1)holdsandthustheoriinalinequalityisproved2)Theinequalityisobviouslytrueforn=1.Assumingthatsinkx∣⩽ksinx,weprovethatsin(k+1)x∣⩽(k+1)sinxIndeed,usingtheinequalitycoskx∣⩽1wehavesin(k+1)x∣=∣sinkx.cosx+sinxcoskx⩽∣sinkx.cosx+sinx∣∣coskx∣⩽sinkx+sinx∣⩽ksinx+sinx=(k+1)sinxwhichshowstherequiredistrue.Theproofcompleted.

Leave a Reply

Your email address will not be published. Required fields are marked *