Menu Close

Prove-the-following-inequalities-hold-true-x-R-a-cos-cosx-gt-0-b-cos-sinx-gt-sin-cosx-




Question Number 119246 by 1549442205PVT last updated on 23/Oct/20
Prove the following  inequalities hold    true ∀x∈R  a)cos(cosx)>0  b)cos(sinx)>sin(cosx)
ProvethefollowinginequalitiesholdtruexRa)cos(cosx)>0b)cos(sinx)>sin(cosx)
Answered by Olaf last updated on 23/Oct/20
a)  −(π/2) < −1 ≤ cosx ≤ +1 < +(π/2)  ⇒ cos(cosx) > 0 (trivial)
a)π2<1cosx+1<+π2cos(cosx)>0(trivial)
Answered by mindispower last updated on 23/Oct/20
cos(sin(x))>0,∀x∈R  sin(cos(x))<0,∀x∈[−π,−(π/2)]∪[(π/2),π]  so we worck just in [−(π/2),(π/2)]  x→cos(sin(−x))=cos(sin(−x))  sin(cos(−x))=sin(cos(x))⇒  just x∈[0,(π/2)]  lets[solve in x∈[0,(π/2)]  cos(sin(x))>sin(cos(x))  ⇔  sin((π/2)−sin(x))>sin(cos(x))  since cos(x),(π/2)−sin(x)∈[0,(π/2)] and sin increase  function  ⇔(π/2)−sin(x)>cos(x)  ⇔sin(x)+cos(x)<(π/2)...E  ∣sin(x)+cos(x)∣≤(√(1^2 +1^2 )).(√(cos^2 (x)+sin^2 ))=(√2)<(π/2)  cauchy shwartz..  by equivalent E true  ⇒sin((π/2)−sin(x))>sin(cos(x))  ⇔cos(sin(x))>sin(cos(x))
cos(sin(x))>0,xRsin(cos(x))<0,x[π,π2][π2,π]soweworckjustin[π2,π2]xcos(sin(x))=cos(sin(x))sin(cos(x))=sin(cos(x))justx[0,π2]lets[solveinx[0,π2]cos(sin(x))>sin(cos(x))sin(π2sin(x))>sin(cos(x))sincecos(x),π2sin(x)[0,π2]andsinincreasefunctionπ2sin(x)>cos(x)sin(x)+cos(x)<π2Esin(x)+cos(x)∣⩽12+12.cos2(x)+sin2=2<π2cauchyshwartz..byequivalentEtruesin(π2sin(x))>sin(cos(x))cos(sin(x))>sin(cos(x))

Leave a Reply

Your email address will not be published. Required fields are marked *