Menu Close

prove-the-following-integral-0-pi-2-x-2-sinx-dx-2piG-7-2-3-0-1-ln-x-1-x-2-x-1-x-2-2-x-1-x-2-dx-pi-2-2-0-e-x-lnx-1-e-2x-dx-pi-2-ln-3-4-




Question Number 113589 by mathdave last updated on 14/Sep/20
prove the following integral  ∫_0 ^(π/2) (x^2 /(sinx))dx=2πG−(7/2)ζ(3)  ∫_0 ^1 ln[((x+(√(1−x^2 )))/(x−(√(1−x^2 ))))]^2 (x/(1−x^2 ))dx=((.π^2 )/2)  ∫_0 ^∞ ((e^x lnx)/(1+e^(2x) ))dx=(π/2)ln[((Γ((3/4)))/(Γ((1/4))))(√(2π))]
provethefollowingintegral0π2x2sinxdx=2πG72ζ(3)01ln[x+1x2x1x2]2x1x2dx=.π220exlnx1+e2xdx=π2ln[Γ(34)Γ(14)2π]
Answered by maths mind last updated on 15/Sep/20
∫_0 ^(π/2) (x^2 /(sin(x)))dx=∫_0 ^(π/2) (x^2 /(2tg((x/2))))(1+tg^2 ((x/2)))dx=∫_0 ^(π/2) x^2 ((d(tg((x/2))))/(tg((x/2))))  IBP=[x^2 ln(tg((x/2)))]_0 ^(π/2) −∫_0 ^(π/2) 2xln(tg((x/2)))dx  =−2∫_0 ^(π/2) xln(tg((x/2)))dx  we use fourier serie of ln(tg(x)),x∈]0,(π/2)[  ln(tg(x))=−2Σ_(k≥0) ((cos(2(2k+1)x))/(2k+1))  we get  =−2∫_0 ^(π/2) xΣ_(k≥0) .−2((cos((2k+1)x))/(2k+1))dx  =4Σ_(k≥0) ∫_0 ^(π/2) x((cos((2k+1)x))/(2k+1)),∫_0 ^(π/2) x((cos(2k+1)x)/(2k+1))dx  =[x((sin(2k+1)x)/((2k+1)^2 ))]_0 ^(π/2) −∫_0 ^(π/2) ((sin(2k+1)x)/((2k+1)^2 ))dx  =(π/2).(((−1)^k )/((2k+1)^2 ))+[((cos(2k+1)x)/((2k+1)^3 ))]_0 ^(π/2) =(π/2).(((−1)^k )/((2k+1)^2 ))−(1/((2k+1)^3 ))  4Σ_(k≥0) ∫_0 ^(π/2) x((cos((2k+1)x))/(2k+1))=4Σ_(k≥0) ((π/2).(((−1)^k )/((2k+1)^2 ))−(1/((2k+1)^3 )))  =2πΣ(((−1)^k )/((2k+1)^2 ))−4Σ_(k≥0) (1/((2k+1)^3 ))  G=Σ_(k≥0) (((−1)^k )/((2k+1)^2 )),ζ(3)=Σ(1/k^3 )=Σ_(k=0) ^∞ ((1/((2k+2)^3 ))+(1/((2k+1)^3 )))  =(1/8)Σ_(k≥0) (1/((k+1)^3 ))+Σ(1/((2k+1)^3 ))⇒Σ_(k≥0) (1/((2k+1)^3 ))=(7/8)ζ(3)  we get So  2πG−4.(7/8)ζ(3)=2πG−(7/2)ζ(3)
0π2x2sin(x)dx=0π2x22tg(x2)(1+tg2(x2))dx=0π2x2d(tg(x2))tg(x2)IBP=[x2ln(tg(x2))]0π20π22xln(tg(x2))dx=20π2xln(tg(x2))dxweusefourierserieofln(tg(x)),x]0,π2[ln(tg(x))=2k0cos(2(2k+1)x)2k+1weget=20π2xk0.2cos((2k+1)x)2k+1dx=4k00π2xcos((2k+1)x)2k+1,0π2xcos(2k+1)x2k+1dx=[xsin(2k+1)x(2k+1)2]0π20π2sin(2k+1)x(2k+1)2dx=π2.(1)k(2k+1)2+[cos(2k+1)x(2k+1)3]0π2=π2.(1)k(2k+1)21(2k+1)34k00π2xcos((2k+1)x)2k+1=4k0(π2.(1)k(2k+1)21(2k+1)3)=2πΣ(1)k(2k+1)24k01(2k+1)3G=k0(1)k(2k+1)2,ζ(3)=Σ1k3=k=0(1(2k+2)3+1(2k+1)3)=18k01(k+1)3+Σ1(2k+1)3k01(2k+1)3=78ζ(3)wegetSo2πG4.78ζ(3)=2πG72ζ(3)
Commented by Tawa11 last updated on 06/Sep/21
great sir
greatsir
Answered by maths mind last updated on 15/Sep/20
∫_0 ^1 ln[((x+(√(1−x^2 )))/(x−(√(1−x^2 ))))]^2 (x/(1−x^2 ))dx,x=sin(t)  =∫_0 ^(π/2) ln(((sin(t)+cos(t))/(sin(t)−cos(t))))^2 ((sin(t)cos(t))/(cos^2 (t)))dt  =∫_0 ^(π/2) ln(((1+tg(t))/(−1+tg(t))))^2 tg(t)dt  =∫_0 ^(π/4) 2ln(((tg(t)+1)/(1−tg(t))))tg(t)dt+∫_(π/4) ^(π/2) 2ln(((tg(t)+1)/(tg(t)−1)))tg(t)dt  =2∫_0 ^(π/4) tg(t)ln(tg((π/4)+t))dt−2∫_(π/4) ^(π/2) tg(t)ln(((tg(t)−1)/(tg(t)+1)))dt  =−2∫_0 ^(π/4) ln(tg(t))tg((π/4)−t)dt−2∫_(π/4) ^(π/2) tg(t)ln(tg(t−(π/4)))dt_(t−(π/4)=r)   =−2∫_0 ^(π/4) ln(tg(t))((1+tg(t))/(1+tg(t)))dt−2∫_0 ^(π/4) tg(r+(π/4))ln(tg(r))dr  =−2∫_0 ^(π/4) ln(tg(t))((1−tg(t))/(1+tg(t)))dt−2∫_0 ^(π/4) ln(tg(t))((1+tg(t))/(1−tg(t)))dt  =−2∫_0 ^(π/4) ln(tg(t))[((1−tg(t))/(1+tg(t)))+((1+tg(t))/(1−tg(t)))]dt  =−2∫_0 ^(π/4) [((2+2tg^2 (t))/(1−tg^2 (t)))]ln(tg(t))dt   tg(t)=x⇒  =−4∫_0 ^1 ((ln(x))/(1−x^2 ))dx=−4∫_0 ^1 ln(x)Σ_(k≥0) x^(2k) dx  =−4Σ_(k≥0) ∫_0 ^1 x^(2k) ln(x)=−4Σ_(k≥0) {[(x^(2k+1) /(2k+1))ln(x)]_0 ^1 −(1/(2k+1))∫_0 ^1 x^(2k) dx  =4Σ_(k≥0) (1/((2k+1)^2 ))=4{ζ(2)−(1/4)ζ(2)}=3ζ(2)=3.(π^2 /6)=(π^2 /2)
01ln[x+1x2x1x2]2x1x2dx,x=sin(t)=0π2ln(sin(t)+cos(t)sin(t)cos(t))2sin(t)cos(t)cos2(t)dt=0π2ln(1+tg(t)1+tg(t))2tg(t)dt=0π42ln(tg(t)+11tg(t))tg(t)dt+π4π22ln(tg(t)+1tg(t)1)tg(t)dt=20π4tg(t)ln(tg(π4+t))dt2π4π2tg(t)ln(tg(t)1tg(t)+1)dt=20π4ln(tg(t))tg(π4t)dt2π4π2tg(t)ln(tg(tπ4))dttπ4=r=20π4ln(tg(t))1+tg(t)1+tg(t)dt20π4tg(r+π4)ln(tg(r))dr=20π4ln(tg(t))1tg(t)1+tg(t)dt20π4ln(tg(t))1+tg(t)1tg(t)dt=20π4ln(tg(t))[1tg(t)1+tg(t)+1+tg(t)1tg(t)]dt=20π4[2+2tg2(t)1tg2(t)]ln(tg(t))dttg(t)=x=401ln(x)1x2dx=401ln(x)k0x2kdx=4k001x2kln(x)=4k0{[x2k+12k+1ln(x)]0112k+101x2kdx=4k01(2k+1)2=4{ζ(2)14ζ(2)}=3ζ(2)=3.π26=π22
Commented by Tawa11 last updated on 06/Sep/21
great sir
greatsir

Leave a Reply

Your email address will not be published. Required fields are marked *