Question Number 113589 by mathdave last updated on 14/Sep/20
![prove the following integral ∫_0 ^(π/2) (x^2 /(sinx))dx=2πG−(7/2)ζ(3) ∫_0 ^1 ln[((x+(√(1−x^2 )))/(x−(√(1−x^2 ))))]^2 (x/(1−x^2 ))dx=((.π^2 )/2) ∫_0 ^∞ ((e^x lnx)/(1+e^(2x) ))dx=(π/2)ln[((Γ((3/4)))/(Γ((1/4))))(√(2π))]](https://www.tinkutara.com/question/Q113589.png)
Answered by maths mind last updated on 15/Sep/20
![∫_0 ^(π/2) (x^2 /(sin(x)))dx=∫_0 ^(π/2) (x^2 /(2tg((x/2))))(1+tg^2 ((x/2)))dx=∫_0 ^(π/2) x^2 ((d(tg((x/2))))/(tg((x/2)))) IBP=[x^2 ln(tg((x/2)))]_0 ^(π/2) −∫_0 ^(π/2) 2xln(tg((x/2)))dx =−2∫_0 ^(π/2) xln(tg((x/2)))dx we use fourier serie of ln(tg(x)),x∈]0,(π/2)[ ln(tg(x))=−2Σ_(k≥0) ((cos(2(2k+1)x))/(2k+1)) we get =−2∫_0 ^(π/2) xΣ_(k≥0) .−2((cos((2k+1)x))/(2k+1))dx =4Σ_(k≥0) ∫_0 ^(π/2) x((cos((2k+1)x))/(2k+1)),∫_0 ^(π/2) x((cos(2k+1)x)/(2k+1))dx =[x((sin(2k+1)x)/((2k+1)^2 ))]_0 ^(π/2) −∫_0 ^(π/2) ((sin(2k+1)x)/((2k+1)^2 ))dx =(π/2).(((−1)^k )/((2k+1)^2 ))+[((cos(2k+1)x)/((2k+1)^3 ))]_0 ^(π/2) =(π/2).(((−1)^k )/((2k+1)^2 ))−(1/((2k+1)^3 )) 4Σ_(k≥0) ∫_0 ^(π/2) x((cos((2k+1)x))/(2k+1))=4Σ_(k≥0) ((π/2).(((−1)^k )/((2k+1)^2 ))−(1/((2k+1)^3 ))) =2πΣ(((−1)^k )/((2k+1)^2 ))−4Σ_(k≥0) (1/((2k+1)^3 )) G=Σ_(k≥0) (((−1)^k )/((2k+1)^2 )),ζ(3)=Σ(1/k^3 )=Σ_(k=0) ^∞ ((1/((2k+2)^3 ))+(1/((2k+1)^3 ))) =(1/8)Σ_(k≥0) (1/((k+1)^3 ))+Σ(1/((2k+1)^3 ))⇒Σ_(k≥0) (1/((2k+1)^3 ))=(7/8)ζ(3) we get So 2πG−4.(7/8)ζ(3)=2πG−(7/2)ζ(3)](https://www.tinkutara.com/question/Q113734.png)
Commented by Tawa11 last updated on 06/Sep/21

Answered by maths mind last updated on 15/Sep/20
![∫_0 ^1 ln[((x+(√(1−x^2 )))/(x−(√(1−x^2 ))))]^2 (x/(1−x^2 ))dx,x=sin(t) =∫_0 ^(π/2) ln(((sin(t)+cos(t))/(sin(t)−cos(t))))^2 ((sin(t)cos(t))/(cos^2 (t)))dt =∫_0 ^(π/2) ln(((1+tg(t))/(−1+tg(t))))^2 tg(t)dt =∫_0 ^(π/4) 2ln(((tg(t)+1)/(1−tg(t))))tg(t)dt+∫_(π/4) ^(π/2) 2ln(((tg(t)+1)/(tg(t)−1)))tg(t)dt =2∫_0 ^(π/4) tg(t)ln(tg((π/4)+t))dt−2∫_(π/4) ^(π/2) tg(t)ln(((tg(t)−1)/(tg(t)+1)))dt =−2∫_0 ^(π/4) ln(tg(t))tg((π/4)−t)dt−2∫_(π/4) ^(π/2) tg(t)ln(tg(t−(π/4)))dt_(t−(π/4)=r) =−2∫_0 ^(π/4) ln(tg(t))((1+tg(t))/(1+tg(t)))dt−2∫_0 ^(π/4) tg(r+(π/4))ln(tg(r))dr =−2∫_0 ^(π/4) ln(tg(t))((1−tg(t))/(1+tg(t)))dt−2∫_0 ^(π/4) ln(tg(t))((1+tg(t))/(1−tg(t)))dt =−2∫_0 ^(π/4) ln(tg(t))[((1−tg(t))/(1+tg(t)))+((1+tg(t))/(1−tg(t)))]dt =−2∫_0 ^(π/4) [((2+2tg^2 (t))/(1−tg^2 (t)))]ln(tg(t))dt tg(t)=x⇒ =−4∫_0 ^1 ((ln(x))/(1−x^2 ))dx=−4∫_0 ^1 ln(x)Σ_(k≥0) x^(2k) dx =−4Σ_(k≥0) ∫_0 ^1 x^(2k) ln(x)=−4Σ_(k≥0) {[(x^(2k+1) /(2k+1))ln(x)]_0 ^1 −(1/(2k+1))∫_0 ^1 x^(2k) dx =4Σ_(k≥0) (1/((2k+1)^2 ))=4{ζ(2)−(1/4)ζ(2)}=3ζ(2)=3.(π^2 /6)=(π^2 /2)](https://www.tinkutara.com/question/Q113869.png)
Commented by Tawa11 last updated on 06/Sep/21
