Menu Close

Prove-the-Identity-for-any-a-n-in-Real-Number-1-a-a-n-a-a-2-n-2-a-2-n-1-2-Greatest-Integer-Function-




Question Number 162414 by HongKing last updated on 29/Dec/21
Prove the Identity for any (a,n) in Real Number  (1 + a)∙a^([n])  = a ∙ a^(2[(n/2)])  + a^(2[((n+1)/2)])   [∗] Greatest Integer Function
ProvetheIdentityforany(a,n)inRealNumber(1+a)a[n]=aa2[n2]+a2[n+12][]GreatestIntegerFunction
Answered by mindispower last updated on 31/Dec/21
n∈[2k,2k+1[  [n]=2k  (1+a).a^(2k) =a.a^(2k) +a^(2k) =(1+a).a^(2k)   true  n∈[2k−1,2k]  [n]=2k−1  [(n/2)]=k−1  [((n+1)/2)]=k  (1+a).a^(2k−1) =? a.a^(2(k−1)) +a^(2k) =a^(2k−1) +a^(2k) =a^(2k−1) (1+a)  True  (1+a).a^([n]) =a.a^(2[(n/2)]) +a^(2[((n+1)/2)])
n[2k,2k+1[[n]=2k(1+a).a2k=a.a2k+a2k=(1+a).a2ktruen[2k1,2k][n]=2k1[n2]=k1[n+12]=k(1+a).a2k1=?a.a2(k1)+a2k=a2k1+a2k=a2k1(1+a)True(1+a).a[n]=a.a2[n2]+a2[n+12]
Commented by HongKing last updated on 31/Dec/21
cool my dear Sir thank you so much
coolmydearSirthankyousomuch

Leave a Reply

Your email address will not be published. Required fields are marked *