Menu Close

Prove-the-identity-for-any-n-in-Real-number-n-2-n-1-2-1-4-n-2-2-n-2-n-Greatest-Integer-Function-




Question Number 162411 by HongKing last updated on 29/Dec/21
Prove the identity for any ā€²nā€² in Real number  [(n/2)] āˆ™ [((n + 1)/2)] = (1/4)([n]^2  + 2[(n/2)] - [n])  [āˆ—] Greatest Integer Function
$$\mathrm{Prove}\:\mathrm{the}\:\mathrm{identity}\:\mathrm{for}\:\mathrm{any}\:'\boldsymbol{\mathrm{n}}'\:\mathrm{in}\:\mathrm{Real}\:\mathrm{number} \\ $$$$\left[\frac{\mathrm{n}}{\mathrm{2}}\right]\:\centerdot\:\left[\frac{\mathrm{n}\:+\:\mathrm{1}}{\mathrm{2}}\right]\:=\:\frac{\mathrm{1}}{\mathrm{4}}\left(\left[\mathrm{n}\right]^{\mathrm{2}} \:+\:\mathrm{2}\left[\frac{\mathrm{n}}{\mathrm{2}}\right]\:-\:\left[\mathrm{n}\right]\right) \\ $$$$\left[\ast\right]\:\mathrm{Greatest}\:\mathrm{Integer}\:\mathrm{Function} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *