Menu Close

Prove-the-identity-tan-1-x-cot-1-x-pi-2-




Question Number 130589 by bramlexs22 last updated on 27/Jan/21
 Prove the identity tan^(−1) (x)+cot^(−1) (x)=π/2
Provetheidentitytan1(x)+cot1(x)=π/2
Answered by EDWIN88 last updated on 27/Jan/21
 If f(x)=tan^(−1) (x)+cot^(−1) (x)  then f ′(x)=(1/(1+x^2 )) − (1/(1+x^2 )) = 0  for ∀ values of x. Therefore   f(x)= C , a constant.  To determine the value of C  we put x=1 since we can evaluate  f(1) exactly. Then C=f(1)=   tan^(−1) (1)+cot^(−1) (1)=(π/4)+(π/4)=(π/2)
Iff(x)=tan1(x)+cot1(x)thenf(x)=11+x211+x2=0forvaluesofx.Thereforef(x)=C,aconstant.TodeterminethevalueofCweputx=1sincewecanevaluatef(1)exactly.ThenC=f(1)=tan1(1)+cot1(1)=π4+π4=π2

Leave a Reply

Your email address will not be published. Required fields are marked *