Menu Close

prove-the-relation-0-1-li-5-x-1-5-x-1-5-dx-5-4-25-3072-2-2-6-3-2-4-4-2-2-5-




Question Number 85603 by M±th+et£s last updated on 23/Mar/20
prove the relation  ∫_0 ^1 ((li_5 ((x)^(1/5) ))/( (x)^(1/5) ))dx=(5/4)(((25)/(3072))−((ζ(2))/2^6 )+((ζ(3))/2^4 )−((ζ(4))/2^2 )+ζ(5))
$${prove}\:{the}\:{relation} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{li}_{\mathrm{5}} \left(\sqrt[{\mathrm{5}}]{{x}}\right)}{\:\sqrt[{\mathrm{5}}]{{x}}}{dx}=\frac{\mathrm{5}}{\mathrm{4}}\left(\frac{\mathrm{25}}{\mathrm{3072}}−\frac{\zeta\left(\mathrm{2}\right)}{\mathrm{2}^{\mathrm{6}} }+\frac{\zeta\left(\mathrm{3}\right)}{\mathrm{2}^{\mathrm{4}} }−\frac{\zeta\left(\mathrm{4}\right)}{\mathrm{2}^{\mathrm{2}} }+\zeta\left(\mathrm{5}\right)\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *