Menu Close

prove-thst-R-e-i-x-1-x-2-dx-pi-e-




Question Number 29000 by abdo imad last updated on 03/Feb/18
prove thst    ∫_R     (e^(iξx) /(1+x^2 ))dx= π e^(−∣ξ∣)   .
provethstReiξx1+x2dx=πeξ.
Commented by abdo imad last updated on 04/Feb/18
let  put I= ∫_(−∞) ^(+∞)   (e^(iξx) /(1+x^2 ))dx   case 1  for ξ ≥0   let put  f(z)= (e^(iξz) /(1+z^2 )) the poles of f are  i and −i( simples) so we have   ∫_(−∞) ^(+∞)  f(z)dz=2iπ Re(f,i)=2iπ (e^(i(ξi)) /(2i))=π.e^(−ξ )      case 2  if ξ<o   I= ∫_R   (e^(−iξ(−x)) /(1+x^2 ))dx = ∫_R  (e^(−iξt) /(1+t^2 ))dt  (ch.−x=t)  then   we take g(x)= (e^(−iξt) /(1+t^2 ))⇒I=∫_(−∞) ^(+∞) g(z)dz=2iπ Re(g,i)  =2iπ (e^ξ /(2i))= π .e^ξ    in both case   ∫_R   (e^(iξx) /(1+x^2 ))dx= π e^(−∣ξ∣) .
letputI=+eiξx1+x2dxcase1forξ0letputf(z)=eiξz1+z2thepolesoffareiandi(simples)sowehave+f(z)dz=2iπRe(f,i)=2iπei(ξi)2i=π.eξcase2ifξ<oI=Reiξ(x)1+x2dx=Reiξt1+t2dt(ch.x=t)thenwetakeg(x)=eiξt1+t2I=+g(z)dz=2iπRe(g,i)=2iπeξ2i=π.eξinbothcaseReiξx1+x2dx=πeξ.

Leave a Reply

Your email address will not be published. Required fields are marked *