prove-thst-R-e-i-x-1-x-2-dx-pi-e- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 29000 by abdo imad last updated on 03/Feb/18 provethst∫Reiξx1+x2dx=πe−∣ξ∣. Commented by abdo imad last updated on 04/Feb/18 letputI=∫−∞+∞eiξx1+x2dxcase1forξ⩾0letputf(z)=eiξz1+z2thepolesoffareiand−i(simples)sowehave∫−∞+∞f(z)dz=2iπRe(f,i)=2iπei(ξi)2i=π.e−ξcase2ifξ<oI=∫Re−iξ(−x)1+x2dx=∫Re−iξt1+t2dt(ch.−x=t)thenwetakeg(x)=e−iξt1+t2⇒I=∫−∞+∞g(z)dz=2iπRe(g,i)=2iπeξ2i=π.eξinbothcase∫Reiξx1+x2dx=πe−∣ξ∣. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: prove-that-0-e-t-t-dt-e-i-pi-4-0-e-ix-x-dx-Next Next post: let-give-0-lt-p-lt-1-calculate-K-p-e-pt-1-e-t-dt- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.