Menu Close

prove-to-0-0-2-




Question Number 187088 by mustafazaheen last updated on 13/Feb/23
prove to             (0/0)=2
$$\mathrm{prove}\:\mathrm{to}\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{0}}{\mathrm{0}}=\mathrm{2} \\ $$
Commented by Frix last updated on 13/Feb/23
(0/0) is not defined ⇒ no proof possible.  f(r)=0∧g(r)=0: lim_(x→r)   ((f(x))/(g(x))) =L  L can be undefined or have any value  depending on the nature of  f(x) and g(x)
$$\frac{\mathrm{0}}{\mathrm{0}}\:\mathrm{is}\:\mathrm{not}\:\mathrm{defined}\:\Rightarrow\:\mathrm{no}\:\mathrm{proof}\:\mathrm{possible}. \\ $$$${f}\left({r}\right)=\mathrm{0}\wedge{g}\left({r}\right)=\mathrm{0}:\:\underset{{x}\rightarrow{r}} {\mathrm{lim}}\:\:\frac{{f}\left({x}\right)}{{g}\left({x}\right)}\:={L} \\ $$$${L}\:\mathrm{can}\:\mathrm{be}\:\mathrm{undefined}\:\mathrm{or}\:\mathrm{have}\:\mathrm{any}\:\mathrm{value} \\ $$$$\mathrm{depending}\:\mathrm{on}\:\mathrm{the}\:\mathrm{nature}\:\mathrm{of}\:\:{f}\left({x}\right)\:\mathrm{and}\:{g}\left({x}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *