prove-Use-the-residus-form-0-xsinx-x-2-1-2-dx-pi-4e- Tinku Tara June 4, 2023 None 0 Comments FacebookTweetPin Question Number 175012 by lapache last updated on 16/Aug/22 prove:Usetheresidusform∫0+∞xsinx(x2+1)2dx=π4e Answered by Mathspace last updated on 16/Aug/22 letI=∫0∞xsinx(x2+1)2⇒2I=∫−∞+∞xsinx(x2+1)2dx=Im(∫−∞+∞xeix(x2+1)2dx)Ψ(z)=zeiz(z2+1)2polesofΨ?Ψ(z)=zeiz(z−i)2(z+i)2sothepolesare+−i(doubles)∫−∞+∞Ψ(z)dz=2iπRes(Ψ,i)Res(Ψ,i)=limz→i1(2−1)!{(z−i)2Ψ(z)}(1)=limz→i{zeiz(z+i)2}(1)=limz→i(eiz+izeiz)(z+i)2−2(z+i)zeiz(z+i)4=limz→i(1+iz)eiz(z+i)−2zeiz(z+i)3=−2ie−1(2i)3=−2ie−1−8i=14e∫−∞+∞Ψ(z)dz=2iπ.14e=iπ2eso2I=π2e⇒★I=π4e★ Commented by Mathspace last updated on 16/Aug/22 thankyou Commented by Tawa11 last updated on 16/Aug/22 Greatsir Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-f-0-dt-1-t-i-2-and-calculate-f-Next Next post: Question-43945 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.