Menu Close

prove-Use-the-residus-form-0-xsinx-x-2-1-2-dx-pi-4e-




Question Number 175012 by lapache last updated on 16/Aug/22
prove: Use the residus form  ∫_0 ^(+∞) ((xsinx)/((x^2 +1)^2 ))dx=(π/(4e))
prove:Usetheresidusform0+xsinx(x2+1)2dx=π4e
Answered by Mathspace last updated on 16/Aug/22
letI=∫_0 ^∞  ((xsinx)/((x^2 +1)^2 )) ⇒  2I=∫_(−∞) ^(+∞) ((xsinx)/((x^2 +1)^2 ))dx  =Im(∫_(−∞) ^(+∞) ((xe^(ix) )/((x^2 +1)^2 ))dx)  Ψ(z)=((ze^(iz) )/((z^2 +1)^2 ))  poles of Ψ?  Ψ(z)=((ze^(iz) )/((z−i)^2 (z+i)^2 ))  so the poles are +^− i(doubles)  ∫_(−∞) ^(+∞) Ψ(z)dz=2iπRes(Ψ,i)  Res(Ψ,i)=lim_(z→i) (1/((2−1)!)){(z−i)^2 Ψ(z)}^((1))   =lim_(z→i) {((ze^(iz) )/((z+i)^2 ))}^((1))   =lim_(z→i)    (((e^(iz) +ize^(iz) )(z+i)^2 −2(z+i)ze^(iz) )/((z+i)^4 ))  =lim_(z→i) (((1+iz)e^(iz) (z+i)−2ze^(iz) )/((z+i)^3 ))  =((−2ie^(−1) )/((2i)^3 ))=((−2ie^(−1) )/(−8i))=(1/(4e))  ∫_(−∞) ^(+∞) Ψ(z)dz=2iπ.(1/(4e))=((iπ)/(2e))  so 2I=(π/(2e)) ⇒★I=(π/(4e))★
letI=0xsinx(x2+1)22I=+xsinx(x2+1)2dx=Im(+xeix(x2+1)2dx)Ψ(z)=zeiz(z2+1)2polesofΨ?Ψ(z)=zeiz(zi)2(z+i)2sothepolesare+i(doubles)+Ψ(z)dz=2iπRes(Ψ,i)Res(Ψ,i)=limzi1(21)!{(zi)2Ψ(z)}(1)=limzi{zeiz(z+i)2}(1)=limzi(eiz+izeiz)(z+i)22(z+i)zeiz(z+i)4=limzi(1+iz)eiz(z+i)2zeiz(z+i)3=2ie1(2i)3=2ie18i=14e+Ψ(z)dz=2iπ.14e=iπ2eso2I=π2eI=π4e
Commented by Mathspace last updated on 16/Aug/22
thank you
thankyou
Commented by Tawa11 last updated on 16/Aug/22
Great sir
Greatsir

Leave a Reply

Your email address will not be published. Required fields are marked *