Menu Close

prove-using-the-first-principle-that-the-derivative-of-sin-x-is-cox-x-and-that-the-derivative-of-cos-x-is-sinx-




Question Number 129033 by oustmuchiya@gmail.com last updated on 12/Jan/21
prove using the first principle that  the derivative of sin x is cox x and  that the derivative of cos x is  −sinx
$${prove}\:{using}\:{the}\:{first}\:{principle}\:{that} \\ $$$${the}\:{derivative}\:{of}\:\boldsymbol{{sin}}\:\boldsymbol{{x}}\:{is}\:\boldsymbol{{cox}}\:\boldsymbol{{x}}\:{and} \\ $$$${that}\:{the}\:{derivative}\:{of}\:\boldsymbol{{cos}}\:\boldsymbol{{x}}\:{is} \\ $$$$−\boldsymbol{{sinx}} \\ $$
Commented by bramlexs22 last updated on 12/Jan/21
y=sin x  y′ = lim_(h→0) ((sin (x+h)−sin x)/h)       = lim_(h→0)  ((2cos (((2x+h)/2))sin ((h/2)))/h)      = lim_(h→0) ((sin (h/2))/h) × 2cos x   = cos x
$$\mathrm{y}=\mathrm{sin}\:\mathrm{x} \\ $$$$\mathrm{y}'\:=\:\underset{\mathrm{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:\left(\mathrm{x}+\mathrm{h}\right)−\mathrm{sin}\:\mathrm{x}}{\mathrm{h}} \\ $$$$\:\:\:\:\:=\:\underset{\mathrm{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2cos}\:\left(\frac{\mathrm{2x}+\mathrm{h}}{\mathrm{2}}\right)\mathrm{sin}\:\left(\frac{\mathrm{h}}{\mathrm{2}}\right)}{\mathrm{h}} \\ $$$$\:\:\:\:=\:\underset{\mathrm{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:\left(\mathrm{h}/\mathrm{2}\right)}{\mathrm{h}}\:×\:\mathrm{2cos}\:\mathrm{x} \\ $$$$\:=\:\mathrm{cos}\:\mathrm{x}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *