Menu Close

Prove-without-mathematical-induction-that-the-expression-1-2-2n-1-2-2n-is-even-for-every-natural-number-n-




Question Number 58409 by Tawa1 last updated on 22/Apr/19
Prove without mathematical induction that the   expression   (1 + (√2))^(2n)  + (1 − (√2))^(2n)   is even for every  natural number  n.
Provewithoutmathematicalinductionthattheexpression(1+2)2n+(12)2nisevenforeverynaturalnumbern.
Commented by maxmathsup by imad last updated on 22/Apr/19
let A_n =(1+(√2))^(2n)  +(1−(√2))^(2n)   ⇒A_n =Σ_(k=0) ^(2n)  C_(2n) ^k  ((√2))^k  +Σ_(k=0) ^(2n)  C_(2n) ^k  (−(√2))^k   =Σ_(k=0) ^(2n)  C_(2n) ^k  { ((√2))^k  +(−(√2))^k } =Σ_(k =2p)   (...) +Σ_(k=2p+1) (...)  =Σ_(p=0) ^n   C_(2n) ^(2p)    2^(p+1)  +0 =2 {Σ_(p=0) ^n   C_(2n) ^(2p)   2^p  }  ⇒A_n is even .
letAn=(1+2)2n+(12)2nAn=k=02nC2nk(2)k+k=02nC2nk(2)k=k=02nC2nk{(2)k+(2)k}=k=2p()+k=2p+1()=p=0nC2n2p2p+1+0=2{p=0nC2n2p2p}Aniseven.
Commented by Tawa1 last updated on 23/Apr/19
God bless you sir,  i will check if i can understand the solution
Godblessyousir,iwillcheckificanunderstandthesolution
Commented by maxmathsup by imad last updated on 23/Apr/19
you are welcome sir, here i have used the binome formulae .
youarewelcomesir,hereihaveusedthebinomeformulae.

Leave a Reply

Your email address will not be published. Required fields are marked *