Menu Close

proven-that-1-0-1-et-que-0-1-




Question Number 158301 by LEKOUMA last updated on 02/Nov/21
proven that   1^0 =1 et que 0!=1
$${proven}\:{that}\: \\ $$$$\mathrm{1}^{\mathrm{0}} =\mathrm{1}\:{et}\:{que}\:\mathrm{0}!=\mathrm{1} \\ $$
Commented by Rasheed.Sindhi last updated on 02/Nov/21
1=(1/1)=(1^1 /1^1 )=1^(1−1) =1^0 ⇒1^0 =1  Generally,  1=(a/a)=(a^1 /a^1 )=a^(1−1) =a^0 ⇒a^0 =1
$$\mathrm{1}=\frac{\mathrm{1}}{\mathrm{1}}=\frac{\mathrm{1}^{\mathrm{1}} }{\mathrm{1}^{\mathrm{1}} }=\mathrm{1}^{\mathrm{1}−\mathrm{1}} =\mathrm{1}^{\mathrm{0}} \Rightarrow\mathrm{1}^{\mathrm{0}} =\mathrm{1} \\ $$$${Generally}, \\ $$$$\mathrm{1}=\frac{{a}}{{a}}=\frac{{a}^{\mathrm{1}} }{{a}^{\mathrm{1}} }={a}^{\mathrm{1}−\mathrm{1}} ={a}^{\mathrm{0}} \Rightarrow{a}^{\mathrm{0}} =\mathrm{1} \\ $$
Answered by physicstutes last updated on 02/Nov/21
we now that  n! = n(n−1)!  set n = 1  ⇒ 1! = 1(1−1)!  ⇒ 1 = 1(0)!  ⇒ 0! = 1
$$\mathrm{we}\:\mathrm{now}\:\mathrm{that} \\ $$$${n}!\:=\:{n}\left({n}−\mathrm{1}\right)! \\ $$$$\mathrm{set}\:{n}\:=\:\mathrm{1} \\ $$$$\Rightarrow\:\mathrm{1}!\:=\:\mathrm{1}\left(\mathrm{1}−\mathrm{1}\right)! \\ $$$$\Rightarrow\:\mathrm{1}\:=\:\mathrm{1}\left(\mathrm{0}\right)! \\ $$$$\Rightarrow\:\mathrm{0}!\:=\:\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *