Menu Close

px-q-x-2-r-2-




Question Number 149498 by peter frank last updated on 05/Aug/21
  ∫((px+q)/( (√(x^2 +r^2 ))))
px+qx2+r2
Answered by MJS_new last updated on 05/Aug/21
∫((px+q)/( (√(x^2 +r^2 ))))dx=       [t=((x+(√(x^2 +r^2 )))/r) → dx=((r(√(x^2 +r^2 )))/(x+(√(x^2 +r^2 ))))dt=((√(x^2 +r^2 ))/t)dt]  =∫((prt^2 +2qt−pr)/(2t^2 ))dt=∫((q/t)−((pr)/(2t^2 ))+((pr)/2))dt=  =qln t +((pr)/(2t))+((prt)/2)=qln t +((pr(t^2 +1))/(2t))=  =qln (x+(√(x^2 +r^2 )))> +p(√(x^2 +r^2 )) +C
px+qx2+r2dx=[t=x+x2+r2rdx=rx2+r2x+x2+r2dt=x2+r2tdt]=prt2+2qtpr2t2dt=(qtpr2t2+pr2)dt==qlnt+pr2t+prt2=qlnt+pr(t2+1)2t==qln(x+x2+r2)>+px2+r2+C
Commented by peter frank last updated on 06/Aug/21
thank you
thankyou
Answered by Ar Brandon last updated on 06/Aug/21
I=∫((px+q)/( (√(x^2 +r^2 ))))dx    =∫((px)/( (√(x^2 +r^2 ))))dx+∫(q/( (√(x^2 +r^2 ))))dx    =(p/2)∫((2x)/( (√(x^2 +r^2 ))))dx+∫(q/( (√(x^2 +r^2 ))))dx    =p(√(x^2 +r^2 ))+q arcsinh((x/r))+C    =p(√(x^2 +r^2 ))+qln(x+(√(x^2 +r^2 )))+C
I=px+qx2+r2dx=pxx2+r2dx+qx2+r2dx=p22xx2+r2dx+qx2+r2dx=px2+r2+qarcsinh(xr)+C=px2+r2+qln(x+x2+r2)+C
Commented by peter frank last updated on 06/Aug/21
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *