Menu Close

Q-1-A-quadratic-equation-x-2-3x-4-0-has-roots-and-without-solving-a-write-down-the-values-of-2-2-b-find-the-quadratic-equation-with-integral-coefficients-whose-roots-are-1-2-and-1-




Question Number 35363 by Rio Mike last updated on 18/May/18
Q_1 . A quadratic equation x^2 −3x+4=0  has roots α and β .without solving  a)write down the values of α^2 +β^2   b) find the quadratic equation  with integral coefficients,whose  roots are (1/α^2 ) and(1/β^2 )  Q_2 . the first term of a GP is 32   and the sum to infinity is 48.  find the common ratio and the 8^(th)   term of the progression
Q1.Aquadraticequationx23x+4=0hasrootsαandβ.withoutsolvinga)writedownthevaluesofα2+β2b)findthequadraticequationwithintegralcoefficients,whoserootsare1α2and1β2Q2.thefirsttermofaGPis32andthesumtoinfinityis48.findthecommonratioandthe8thtermoftheprogression
Answered by Rasheed.Sindhi last updated on 18/May/18
Q_1   α & β are the roots of x^2 −3x+4=0     α+β=((−(−3))/1)=3 , αβ=(4/1)=4  (a) α^2 +β^2 =(α+β)^2 −2αβ                 =(3)^2 −2(4)=9−8=1  (b) Thwe equation whose roots are (1/α^2 ) &(1/β^2 )  Sum-of-roots= (1/α^2 )+(1/β^2 )=((α^2 +β^2 )/((αβ)^2 ))                 =(1/((4)^2 ))=1/16  Product-of-roots= (1/α^2 )×(1/β^2 )=(1/((αβ)^2 ))                                   =(1/((4)^2 ))=(1/(16))   The new equation:     x^2 −(sum)x+product=0    x^2 −(1/16)x+(1/16)=0   16x^2 −x+1=0
Q1α&βaretherootsofx23x+4=0α+β=(3)1=3,αβ=41=4(a)α2+β2=(α+β)22αβ=(3)22(4)=98=1(b)Thweequationwhoserootsare1α2&1β2Sumofroots=1α2+1β2=α2+β2(αβ)2=1(4)2=1/16Productofroots=1α2×1β2=1(αβ)2=1(4)2=116Thenewequation:x2(sum)x+product=0x2(1/16)x+(1/16)=016x2x+1=0
Commented by MJS last updated on 18/May/18
you′re typing faster than me ;−)
youretypingfasterthanme;)
Commented by Rasheed.Sindhi last updated on 18/May/18
Only for this time.Always you beat me!
Onlyforthistime.Alwaysyoubeatme!
Answered by Rasheed.Sindhi last updated on 18/May/18
Q_2        a=32      S_∞ =(a/(1−r))=48               ((32)/(1−r))=48                32=48−48r                r=((48−32)/(48))=(1/3)         t_n =ar^(n−1)          t_8 =32×(1/3)^(8−1) =((32)/3^7 )=((32)/(2187))
Q2a=32S=a1r=48321r=4832=4848rr=483248=13tn=arn1t8=32×(1/3)81=3237=322187
Answered by MJS last updated on 18/May/18
(x−α)(x−β)=x^2 −(α+β)x+αβ  we know that αβ=4 and α+β=3 ⇒  α^2 +β^2 =(α+β)^2 −2αβ=3^2 −2×4=1  (x−(1/α^2 ))(x−(1/β^2 ))=x^2 −((α^2 +β^2 )/(α^2 β^2 ))x+(1/(α^2 β^2 ))=  =x^2 −(1/(16))x+(1/(16))  16x^2 −x+1=0
(xα)(xβ)=x2(α+β)x+αβweknowthatαβ=4andα+β=3α2+β2=(α+β)22αβ=322×4=1(x1α2)(x1β2)=x2α2+β2α2β2x+1α2β2==x2116x+11616x2x+1=0

Leave a Reply

Your email address will not be published. Required fields are marked *