Menu Close

Q-1-Coefficient-of-a-8-b-4-c-9-d-9-in-expansion-of-abc-abd-acd-bcd-10-Q-2-Coefficient-of-1-x-in-expansion-of-1-x-n-1-1-x-n-Q-3-If-x-m-occurs-in-expansion-of-x-1-x-2-2n




Question Number 48705 by rahul 19 last updated on 27/Nov/18
Q.1→  Coefficient of a^8 b^4 c^9 d^9  in expansion  of (abc+abd+acd+bcd)^(10)  =?    Q.2→  Coefficient of (1/x) in expansion of  (1+x)^n (1+(1/x))^n =?    Q.3→  If x^m  occurs in expansion of   (x+(1/x^2 ))^(2n) , then its coefficient=?
Q.1Coefficientofa8b4c9d9inexpansionof(abc+abd+acd+bcd)10=?Q.2Coefficientof1xinexpansionof(1+x)n(1+1x)n=?Q.3Ifxmoccursinexpansionof(x+1x2)2n,thenitscoefficient=?
Commented by rahul 19 last updated on 27/Nov/18
On request of Meritguide sir,  these are some problems ....  Hope u find them interesting!:)
OnrequestofMeritguidesir,thesearesomeproblems.Hopeufindtheminteresting!:)
Commented by maxmathsup by imad last updated on 27/Nov/18
3) we have (x+(1/x^2 ))^(2n) =x^(2n) (1+(1/x))^(2n)  =x^(2n) Σ_(k=0) ^(2n) C_(2n) ^k   x^(−k)  =Σ_(k=0) ^n  C_(2n) ^k  x^(2n−k)  so the  coefficient is λ_m =C_(2n) ^k   /2n−k =m ⇒k=2n−m ⇒λ_m =C_(2n) ^(2n−m)   =C_(2n) ^m   =(((2n)!)/(m!(2n−m)!))
3)wehave(x+1x2)2n=x2n(1+1x)2n=x2nk=02nC2nkxk=k=0nC2nkx2nksothecoefficientisλm=C2nk/2nk=mk=2nmλm=C2n2nm=C2nm=(2n)!m!(2nm)!
Answered by tanmay.chaudhury50@gmail.com last updated on 27/Nov/18
2)(1+x)^n ×(1+x)^n ×x^(−n)   x^(−n) (1+x)^(2n)   let (r+1)th term of (1+x)^(2n) contains x^(n−1)   2n_c_r  x^r   so x^r =x^(n−1)   so required x^(−n) ×2n_c_(n−1)  ×x^(n−1)   =(((2n)!)/((n−1)!(n+1)!))x^(−1)   so coefficient is (((2n)!)/((n−1)!(n+1)!))
2)(1+x)n×(1+x)n×xnxn(1+x)2nlet(r+1)thtermof(1+x)2ncontainsxn12ncrxrsoxr=xn1sorequiredxn×2ncn1×xn1=(2n)!(n1)!(n+1)!x1socoefficientis(2n)!(n1)!(n+1)!
Answered by tanmay.chaudhury50@gmail.com last updated on 27/Nov/18
3)let (r+1)th term contains x^m   2n_c_r  (x)^(2n−r) (x^(−2) )^r   2n_c_r  (x)^(2n−3r)   2n−3r=m  r=((2n−m)/3)  so term is  2n_c_((2n−m)/3)  (x)^m   so coefficient is (((2n)!)/((((2n−m)/3))!(((4n+m)/3))!))
3)let(r+1)thtermcontainsxm2ncr(x)2nr(x2)r2ncr(x)2n3r2n3r=mr=2nm3sotermis2nc2nm3(x)msocoefficientis(2n)!(2nm3)!(4n+m3)!
Answered by tanmay.chaudhury50@gmail.com last updated on 28/Nov/18
1){abcd((1/d)+(1/c)+(1/b)+(1/a))}^(10)   =(abcd)^(10) ((1/a)+(1/b)+(1/c)+(1/d))^(10)   C(abcd)^(10) ×(1/a^2 )×(1/b^6 )×(1/c)×(1/d) is the required  term which contains a^8 b^4 c^9 d^9   now value of C is =((10!)/(2!6!1!1!))=((10!)/(2!6!))
1){abcd(1d+1c+1b+1a)}10=(abcd)10(1a+1b+1c+1d)10C(abcd)10×1a2×1b6×1c×1distherequiredtermwhichcontainsa8b4c9d9nowvalueofCis=10!2!6!1!1!=10!2!6!
Commented by rahul 19 last updated on 28/Nov/18
thanks sir Ur all answers are absolutely correct!
Commented by tanmay.chaudhury50@gmail.com last updated on 28/Nov/18
thank you Rahul...how is your preparation  for IIT JEE
thankyouRahulhowisyourpreparationforIITJEE

Leave a Reply

Your email address will not be published. Required fields are marked *