Menu Close

Q-1-find-the-term-in-x-6-in-the-expansion-of-x-2-2-x-9-Q-2-in-the-binomial-expansion-of-x-k-x-6-the-term-independent-of-x-is-160-find-the-value-of-k-Q-3-find-the-constand-term-in




Question Number 35357 by Rio Mike last updated on 18/May/18
Q_1 . find the term in x^6  in the   expansion of (x^2 +(2/x))^9   Q_2 . in the binomial expansion of   (x+(k/x))^6 , the term independent of x  is 160 find the value of k.  Q_3 . find the constand term in the  binomial of (x+(3/x))^(12) .
Q1.findtheterminx6intheexpansionof(x2+2x)9Q2.inthebinomialexpansionof(x+kx)6,thetermindependentofxis160findthevalueofk.Q3.findtheconstandterminthebinomialof(x+3x)12.
Answered by MJS last updated on 18/May/18
(a+b)^n =Σ_(k=0) ^n  ((n),(k) )×a^(n−k) b^k   (x^p +(r/x^q ))^n =(1/x^(nq) )(x^(p+q) +r)^n =  =(1/x^(nq) )×Σ_(k=0) ^n  ((n),(k) )×r^k ×(x^(p+q) )^(n−k) =  =(1/x^(nq) )×Σ_(k=0) ^n  ((n),(k) )×r^k ×x^((p+q)(n−k)) =  =Σ_(k=0) ^n  ((n),(k) )×r^k ×x^(np−k(p+q))     (x^2 +(2/x))^9 =            [n=9; p=2; q=1; r=2]  =Σ_(k=0) ^9  ((9),(k) )×2^k x^(18−3k)   18−3k=6 ⇒ k=4   ((9),(4) )×2^4 =((9!)/(4!×5!))×16=2016    (x+(k/x))^6  let k=r to avoid confusion  (x+(r/x))^6 =            [n=6; p=1; q=1]  =Σ_(k=0) ^6  ((6),(k) )×r^k x^(6−2k)   6−2k=0 ⇒ k=3   ((6),(3) )×r^3 =160  ((6!)/((3!)^2 ))r^3 =160  20r^3 =160  r^3 =8  r=2  so the searched k=2    (x+(3/x))^(12) =            [n=12; p=1; q=1; r=3]  =Σ_(k=0) ^(12)  (((12)),(k) )×3^k x^(12−2k)   12−2k=0 ⇒ k=6  ((12!)/((6!)^2 ))3^6 =924×729=673596
(a+b)n=nk=0(nk)×ankbk(xp+rxq)n=1xnq(xp+q+r)n==1xnq×nk=0(nk)×rk×(xp+q)nk==1xnq×nk=0(nk)×rk×x(p+q)(nk)==nk=0(nk)×rk×xnpk(p+q)(x2+2x)9=[n=9;p=2;q=1;r=2]=9k=0(9k)×2kx183k183k=6k=4(94)×24=9!4!×5!×16=2016(x+kx)6letk=rtoavoidconfusion(x+rx)6=[n=6;p=1;q=1]=6k=0(6k)×rkx62k62k=0k=3(63)×r3=1606!(3!)2r3=16020r3=160r3=8r=2sothesearchedk=2(x+3x)12=[n=12;p=1;q=1;r=3]=12k=0(12k)×3kx122k122k=0k=612!(6!)236=924×729=673596
Answered by ajfour last updated on 18/May/18
Q.1)  (x^2 +(2/x))^9 =ΣT_(r+1) =Σ_(r=0) ^9 ^9 C_r (x^2 )^r ((2/x))^(9−r)     for T_(r+1)  to have  x^6 ,         2r−9+r=6    ⇒   r=5  coefficient =^9 C_5 ×2^4  =126×16       =2016 .  Q.2)    (x+(k/x))^6 =Σ_(r=0) ^6 T_(r+1) =Σ_(r=0) ^6  ^6 C_r x^r ((k/x))^(6−k)   for term independent of x         r=6−r  ⇒ r=3  coeff. of term with x^0  =^6 C_3 k^3 =160         ⇒ 20k^3 =160     or    k=2  Q.3)  (x+(3/x))^(12) =Σ_(r=0) ^(12) T_(r+1) =Σ_(r=0) ^(12)  ^(12) C_r x^r ((3/x))^(12−r)   for term with x^0  ,      r+12−r=0   ⇒  r=6        the term =^(12) C_6 (3^6 )     =((7×8×9×10×11×12)/(6×5×4×3×2))×81×9     =((7×8×9×11)/6)×81×9     = 84×11×9×81     = 673596 .
Q.1)(x2+2x)9=ΣTr+1=9r=09Cr(x2)r(2x)9rforTr+1tohavex6,2r9+r=6r=5coefficient=9C5×24=126×16=2016.Q.2)(x+kx)6=6r=0Tr+1=6r=06Crxr(kx)6kfortermindependentofxr=6rr=3coeff.oftermwithx0=6C3k3=16020k3=160ork=2Q.3)(x+3x)12=12r=0Tr+1=12r=012Crxr(3x)12rfortermwithx0,r+12r=0r=6theterm=12C6(36)=7×8×9×10×11×126×5×4×3×2×81×9=7×8×9×116×81×9=84×11×9×81=673596.

Leave a Reply

Your email address will not be published. Required fields are marked *