Menu Close

Q-13724-Reposted-E-xpansion-of-1000-has-24-0-s-at-the-end-Find-the-first-non-zero-digit-from-right-1000-d0000-0-What-is-the-the-value-of-d-




Question Number 15543 by RasheedSoomro last updated on 11/Jun/17
Q#13724 Reposted.  E_  ^  xpansion of 1000!  has 24  0′s at the end. Find  the first non- zero digit   from right.  1000!=....d0000...0  What is the the value of d?
You can't use 'macro parameter character #' in math modeExpansionof1000!has240sattheend.Findthefirstnonzerodigitfromright.1000!=.d00000Whatisthethevalueofd?
Answered by RasheedSoomro last updated on 11/Jun/17
Used   results:  (5k+1)(5k+2)(5k+3)(5k+4)≡4(mod 10)  (((5k+1)(5k+2)(5k+3)(5k+4))/2)≡2(mod 10)  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−  Expansion of 1000! has 249  0′s at the end.  Let p=((1000!)/(10^(249) )), p has no 0 at the end.  p=((1000!)/(2^(249) ×5^(249) ))  We can write  5^(249) =5×((10)/2)×((15)/3)×...((965)/(193))×...((985)/(197))×((990)/(2.3^2 .11))×.((995)/(199))×((1000)/2^3 )          =((5.10.15....1000)/(2^α_2  ×3^α_3  ×7^α_7  ×...193^α_(193)  ×197^α_(197)  ×199^α_(199)  ))  α_2 =⌊((1000)/(10))⌋+⌊((1000)/(20))⌋+⌊((1000)/(40))⌋+⌊((1000)/(80))⌋+⌊((1000)/(160))⌋+⌊((1000)/(320))⌋+⌊((1000)/(640))⌋     =100+50+25+12+6+3+1=197  α_3 =⌊((1000)/(15))⌋+⌊((1000)/(45))⌋+⌊((1000)/(135))⌋+⌊((1000)/(405))⌋=66+22+7+2=97  By same formula  α_7 =32,α_(11) =19,α_(13) =16 , α_(17) =11,α_(19) =10 , α_(23) =8,  α_(29) =α_(31) =6,α_(37) =5 , α_(41) =α_(43) =α_(47) =4,α_(53) =α_(59) =α_(61) =3,  α_(67) =α_(71) =α_(73) =α_(79) =α_(83) =α_(89) =α_(97) =2  α_(101) =α_(103) =…=α_(199) =1  Hence         5^(249) =((5.10.15....1000)/(2^(197) .3^(97) .7^(32) ...199^1 ))  So       p=((1000!)/(2^(249) ×5^(249) ))=((1000!)/(2^(249) ×(((5.10.15....1000)/(2^(197) .3^(97) .7^(32) ...199^1 )))))       p=((1000!)/(2^(249) ×5^(249) ))=((1000!)/(2^(52) ×(((5.10.15....1000)/(3^(97) .7^(32) ...199^1 )))))     p=(3^(97) .7^(32) ...199^1 )(((1000!)/(2^(52) (5.10...1000)))  p=(3^(97) .7^(32) ...199^1 ){(((1.2.3.4)/2))(6...9)(11....14)(((16...19)/2))}           ×{(21...24)(26....29)(31...34)(((36...39)/2))}             ×...×{(981...984)(986...989)(991...994)(((996...999)/2))}  Now we can see that  3^(97) ≡3,7^(32) ≡1,11^(19) ≡1,13^(16) ≡1,17^(11) ≡3,19^(10) ≡1,23^8 ≡1    Continue
Usedresults:(5k+1)(5k+2)(5k+3)(5k+4)4(mod10)(5k+1)(5k+2)(5k+3)(5k+4)22(mod10)Expansionof1000!has2490sattheend.Letp=1000!10249,phasno0attheend.p=1000!2249×5249Wecanwrite5249=5×102×153×965193×985197×9902.32.11×.995199×100023=5.10.15.10002α2×3α3×7α7×193α193×197α197×199α199α2=100010+100020+100040+100080+1000160+1000320+1000640=100+50+25+12+6+3+1=197α3=100015+100045+1000135+1000405=66+22+7+2=97Bysameformulaα7=32,α11=19,α13=16,α17=11,α19=10,α23=8,α29=α31=6,α37=5,α41=α43=α47=4,α53=α59=α61=3,α67=α71=α73=α79=α83=α89=α97=2α101=α103==α199=1Hence5249=5.10.15.10002197.397.7321991Sop=1000!2249×5249=1000!2249×(5.10.15.10002197.397.7321991)p=1000!2249×5249=1000!252×(5.10.15.1000397.7321991)p=(397.7321991)(1000!252(5.101000)p=(397.7321991){(1.2.3.42)(69)(11.14)(16192)}×{(2124)(26.29)(3134)(36392)}××{(981984)(986989)(991994)(9969992)}Nowwecanseethat3973,7321,11191,13161,17113,19101,2381Continue
Commented by tawa tawa last updated on 11/Jun/17
Weldone sir.
Weldonesir.
Commented by RasheedSoomro last updated on 12/Jun/17
Thanks miss tawa. pl see  also my other answer.
Thanksmisstawa.plseealsomyotheranswer.
Answered by RasheedSoomro last updated on 12/Jun/17
NEW    APPROACH_(−)  (The simplest approach)  Used results  (5k+1)(5k+2)(5k+3)(5k+4)≡4(mod 10)  (((5k+1)(5k+2)(5k+3)(5k+4))/2)≡2(mod 10)  2^(4k+1) ≡2(mod 10)  4^(2k) ≡6(mod 10)  −−−−−−−−−−−−−−−−−−−−−−−−  Expansion of 1000! has 249    0′s at the end  p=((1000!)/(10^(249) )) has no zero at the end.  Let f(n)=n!  f(1000)=1000!=(1...4)(5...9)...(996...999)(5.10.15...1000)    =(1...4)(6...9)...(996...999).5^(200) .(1.2.3...200)    =5^(200) (1...4)(6...9)...(996...999)×f(200)    f(200)=(1...4)(6...9)...(196...l99)(5.10...200)                  =5^(40) (1...4)(6...9)...(196...l99)(1.2...40)                  =5^(40) (1...4)(6...9)...(196...l99)×f(40)  f(40)=(1...4)(6...9)...(36...39)(5.10...40)              =5^8 (1...4)(6...9)...(36...39)(1.2...8)              =5^8 (1...4)(6...9)...(36...39)×f(8)  f(8)=(1.2.3.4)(5.6.7.8)(5)             =5(1.2.3.4)(6.7.8)    f(1000)=5^(200) (1...4)(6...9)...(996...999)                          ×5^(40) (1...4)(6...9)...(196...l99)                                ×5^8 (1...4)(6...9)...(36...39)                                        ×5(1...4)(6.7.8)                  =5^(249) (1...4)^4 (6...9)^3 (6.7.8)...(36...39)^3                          ×(41...44)^2 ...(196...199)^2                               ×(201...204)...(996...999)  p=((f(1000))/(2^(249) .5^(249) ))                  =((1/2^(249) ))(6.7.8)(1...4)^4 (6...9)^3 (11...14)^3 ...(36...39)^3                       ×(41...44)^2 (46...49)^2 ...(196...199)^2                            ×(201...204)...(996...999)                 ={(1...4)(6...9)...(996...999)}                  =(6.7.8)(          =((1/2^(249) )){(1...4)...(36....39)^(8 brackets) }^3                      ×{(41...44)...(196...199)^(32 brackets) }^2                          ×{(201...204)...(996...999)^(180 brackets) }                             ×{(1...4)(6.7.8}  Total number of brackets =8×3+32×2+180+2=270  Any of 249 brackets could be given 2 as denominator  (((∗.∗.∗.∗)/2))≡2(mod 10)   [249 congruences]  (∗.∗.∗.∗)≡4(mod 10)    [ 20 congruences]  6.7.8≡6(mod 10)            [ 1  congruence]  Multiplying above congruences  p≡2^(249•) .4^(20∗) .6(mod 2)     ≡2.6.6(mod 10)     ≡2(mod 10
NEWAPPROACH(Thesimplestapproach)Usedresults(5k+1)(5k+2)(5k+3)(5k+4)4(mod10)(5k+1)(5k+2)(5k+3)(5k+4)22(mod10)24k+12(mod10)42k6(mod10)Expansionof1000!has2490sattheendp=1000!10249hasnozeroattheend.Letf(n)=n!f(1000)=1000!=(14)(59)(996999)(5.10.151000)=(14)(69)(996999).5200.(1.2.3200)=5200(14)(69)(996999)×f(200)f(200)=(14)(69)(196l99)(5.10200)=540(14)(69)(196l99)(1.240)=540(14)(69)(196l99)×f(40)f(40)=(14)(69)(3639)(5.1040)=58(14)(69)(3639)(1.28)=58(14)(69)(3639)×f(8)f(8)=(1.2.3.4)(5.6.7.8)(5)=5(1.2.3.4)(6.7.8)f(1000)=5200(14)(69)(996999)×540(14)(69)(196l99)×58(14)(69)(3639)×5(14)(6.7.8)=5249(14)4(69)3(6.7.8)(3639)3×(4144)2(196199)2×(201204)(996999)p=f(1000)2249.5249=(12249)(6.7.8)(14)4(69)3(1114)3(3639)3×(4144)2(4649)2(196199)2×(201204)(996999)={(14)(69)(996999)}=(6.7.8)(=(12249){(14)(36.39)8brackets}3×{(4144)(196199)32brackets}2×{(201204)(996999)180brackets}×{(14)(6.7.8}Totalnumberofbrackets=8×3+32×2+180+2=270Anyof249bracketscouldbegiven2asdenominator(...2)2(mod10)[249congruences](...)4(mod10)[20congruences]6.7.86(mod10)[1congruence]Multiplyingabovecongruencesp2249.420.6(mod2)2.6.6(mod10)2(mod10
Commented by mrW1 last updated on 12/Jun/17
I appreciate very that you never stop  before the solution is found!
Iappreciateverythatyouneverstopbeforethesolutionisfound!
Commented by tawa tawa last updated on 12/Jun/17
Wow , kudox sir.
Wow,kudoxsir.
Commented by mrW1 last updated on 12/Jun/17
CONGRATULATION SIR!
CONGRATULATIONSIR!
Commented by RasheedSoomro last updated on 12/Jun/17
THαnks  SIR!  A part of your congratulation  returns to you, because it is  based on a result proved by you!
THαnksSIR!Apartofyourcongratulationreturnstoyou,becauseitisbasedonaresultprovedbyyou!
Commented by mrW1 last updated on 12/Jun/17
Can you find the last non−zero digit  of 2000! using your method?
Canyoufindthelastnonzerodigitof2000!usingyourmethod?
Commented by RasheedSoomro last updated on 12/Jun/17
I think I can sir.
IthinkIcansir.

Leave a Reply

Your email address will not be published. Required fields are marked *