Menu Close

Q-161744-reposted-with-some-change-Solve-for-integer-numbers-x-y-5-x-y-5-5-y-x-y-5-5-y-5-x-




Question Number 161843 by Rasheed.Sindhi last updated on 23/Dec/21
Q#161744 reposted with some change.  Solve for integer numbers:  (x/y) + (5/x) + ((y - 5)/5) = ((y + x)/(y + 5)) + ((5 + y)/(5 + x))
$${Q}#\mathrm{161744}\:{reposted}\:{with}\:{some}\:{change}. \\ $$$$\mathrm{Solve}\:\mathrm{for}\:\boldsymbol{\mathrm{integer}}\:\mathrm{numbers}: \\ $$$$\frac{\mathrm{x}}{\mathrm{y}}\:+\:\frac{\mathrm{5}}{\mathrm{x}}\:+\:\frac{\mathrm{y}\:-\:\mathrm{5}}{\mathrm{5}}\:=\:\frac{\mathrm{y}\:+\:\mathrm{x}}{\mathrm{y}\:+\:\mathrm{5}}\:+\:\frac{\mathrm{5}\:+\:\mathrm{y}}{\mathrm{5}\:+\:\mathrm{x}} \\ $$
Commented by malwan last updated on 23/Dec/21
x=0 or x=5  then we have one equation  and one variable y
$${x}=\mathrm{0}\:{or}\:{x}=\mathrm{5} \\ $$$${then}\:{we}\:{have}\:{one}\:{equation} \\ $$$${and}\:{one}\:{variable}\:{y} \\ $$
Commented by Rasheed.Sindhi last updated on 23/Dec/21
x≠0 because it′s in denominator.  See Q#161744
$${x}\neq\mathrm{0}\:{because}\:{it}'{s}\:{in}\:{denominator}. \\ $$$${See}\:{Q}#\mathrm{161744} \\ $$
Commented by mr W last updated on 23/Dec/21
x≠0, x≠−5, y≠0, y≠−5  we can see x, y could (but not must)  be multiples of 5, then we can get  follwing solutions:  (5,5)  (5,10)  (−10,5)  but it′s not easy to prove that other  (not multiples of 5) solutions don′t  exist.
$${x}\neq\mathrm{0},\:{x}\neq−\mathrm{5},\:{y}\neq\mathrm{0},\:{y}\neq−\mathrm{5} \\ $$$${we}\:{can}\:{see}\:{x},\:{y}\:{could}\:\left({but}\:{not}\:{must}\right) \\ $$$${be}\:{multiples}\:{of}\:\mathrm{5},\:{then}\:{we}\:{can}\:{get} \\ $$$${follwing}\:{solutions}: \\ $$$$\left(\mathrm{5},\mathrm{5}\right) \\ $$$$\left(\mathrm{5},\mathrm{10}\right) \\ $$$$\left(−\mathrm{10},\mathrm{5}\right) \\ $$$${but}\:{it}'{s}\:{not}\:{easy}\:{to}\:{prove}\:{that}\:{other} \\ $$$$\left({not}\:{multiples}\:{of}\:\mathrm{5}\right)\:{solutions}\:{don}'{t} \\ $$$${exist}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *