Menu Close

Q-167612-reposted-Determine-all-the-possible-triples-a-b-c-of-positive-integers-for-which-ab-c-bc-a-and-ca-b-are-powers-of-2-




Question Number 167725 by Rasheed.Sindhi last updated on 23/Mar/22
Q#167612 reposted.  Determine all the possible triples  (a,b,c) of positive integers for which  ab−c,bc−a and ca−b are powers of  2.
You can't use 'macro parameter character #' in math modeDetermineallthepossibletriples(a,b,c)ofpositiveintegersforwhichabc,bcaandcabarepowersof2.
Commented by Tinku Tara last updated on 24/Mar/22
a=b=c=2
a=b=c=2
Commented by Tinku Tara last updated on 24/Mar/22
if a^2 −1 is odd then 2^x +2^y a need not be  odd. It could be 2(a^2 −1)k
ifa21isoddthen2x+2yaneednotbeodd.Itcouldbe2(a21)k
Commented by Tinku Tara last updated on 24/Mar/22
subtract (1) from (2)  ab−c=2^α   ac−b=2^β   a(b−c)−(b−c)=2^a (2^b −1)  (b−c)(a−1)=2^a (2^b −1)
subtract(1)from(2)abc=2αacb=2βa(bc)(bc)=2a(2b1)(bc)(a1)=2a(2b1)
Commented by Rasheed.Sindhi last updated on 24/Mar/22
There′s no c on the right side.  That means it has no effect on the  result?
Theresnocontherightside.Thatmeansithasnoeffectontheresult?
Answered by Rasheed.Sindhi last updated on 24/Mar/22
A Try...  (e represents even and o represents odd here)  Case0:No one of a,b,c is odd.  Let a,b,c are denoted as e_a ,e_b ,e_c   respectively.  ab−c=e_a e_b −e_c =2^l                     e−e=e                      e=e  bc−a=e_b e_c −e_a =2^m                   e−e=e                      e=e  ca−b=e_c e_a −e_b =2^n                      e−e=e                      e=e  No contradiction!  Case1:Only one of a,b,c is odd.  Let a,b,c are denoted as o_a ,e_b ,e_c   respectively.  ab−c=o_a e_b −e_c =2^l   bc−a=e_b e_c −o_a =2^m               e−o=e               o=e  Contrdiction!  ca−b=e_c o_a −e_b =2^n   Case2:Only two of a,b,c are odd.  Let a,b,c are denoted as o_a ,o_b ,e_c   respectively.  ab−c=o_a o_b −e_c =2^l                   o−e=e                  o=e  Contrdiction!  Case3:All of a,b,c are odd.  Let a,b,c are denoted as o_a ,o_b ,o_c   respectively.  ab−c=o_a o_b −o_c =2^l                   o−o=e                       e=e  bc−a=o_b o_c −o_a =2^m                   o−o=e                       e=e  ca−b=o_c o_a −o_b =2^l                   o−o=e                       e=e  No contradiction!    ∴ Either all the three are odd or  even.   determinant (( determinant (((a,b,c ∈ E)))_ determinant (((or)))_(   determinant (((a,b,c ∈_ ^  O))))  ))
ATry(erepresentsevenandorepresentsoddhere)Case0:Nooneofa,b,cisodd.Leta,b,caredenotedasea,eb,ecrespectively.abc=eaebec=2lee=ee=ebca=ebecea=2mee=ee=ecab=eceaeb=2nee=ee=eNocontradiction!Case1:Onlyoneofa,b,cisodd.Leta,b,caredenotedasoa,eb,ecrespectively.abc=oaebec=2lbca=ebecoa=2meo=eo=eContrdiction!cab=ecoaeb=2nCase2:Onlytwoofa,b,careodd.Leta,b,caredenotedasoa,ob,ecrespectively.abc=oaobec=2loe=eo=eContrdiction!Case3:Allofa,b,careodd.Leta,b,caredenotedasoa,ob,ocrespectively.abc=oaoboc=2loo=ee=ebca=obocoa=2moo=ee=ecab=ocoaob=2loo=ee=eNocontradiction!Eitherallthethreeareoddoreven.a,b,cEora,b,cO

Leave a Reply

Your email address will not be published. Required fields are marked *