Question Number 167725 by Rasheed.Sindhi last updated on 23/Mar/22
$${Q}#\mathrm{167612}\:{reposted}. \\ $$$$\mathcal{D}{etermine}\:{all}\:{the}\:{possible}\:{triples} \\ $$$$\left({a},{b},{c}\right)\:{of}\:{positive}\:{integers}\:{for}\:{which} \\ $$$${ab}−{c},{bc}−{a}\:{and}\:{ca}−{b}\:{are}\:{powers}\:{of} \\ $$$$\mathrm{2}. \\ $$
Commented by Tinku Tara last updated on 24/Mar/22
$${a}={b}={c}=\mathrm{2} \\ $$
Commented by Tinku Tara last updated on 24/Mar/22
$$\mathrm{if}\:{a}^{\mathrm{2}} −\mathrm{1}\:\mathrm{is}\:\mathrm{odd}\:\mathrm{then}\:\mathrm{2}^{{x}} +\mathrm{2}^{{y}} {a}\:\mathrm{need}\:\mathrm{not}\:\mathrm{be} \\ $$$$\mathrm{odd}.\:\mathrm{It}\:\mathrm{could}\:\mathrm{be}\:\mathrm{2}\left({a}^{\mathrm{2}} −\mathrm{1}\right){k} \\ $$
Commented by Tinku Tara last updated on 24/Mar/22
$$\mathrm{subtract}\:\left(\mathrm{1}\right)\:\mathrm{from}\:\left(\mathrm{2}\right) \\ $$$${ab}−{c}=\mathrm{2}^{\alpha} \\ $$$${ac}−{b}=\mathrm{2}^{\beta} \\ $$$${a}\left({b}−{c}\right)−\left({b}−{c}\right)=\mathrm{2}^{{a}} \left(\mathrm{2}^{{b}} −\mathrm{1}\right) \\ $$$$\left({b}−{c}\right)\left({a}−\mathrm{1}\right)=\mathrm{2}^{{a}} \left(\mathrm{2}^{{b}} −\mathrm{1}\right) \\ $$
Commented by Rasheed.Sindhi last updated on 24/Mar/22
$$\mathcal{T}{here}'{s}\:{no}\:{c}\:{on}\:{the}\:{right}\:{side}. \\ $$$$\mathcal{T}{hat}\:{means}\:{it}\:{has}\:{no}\:{effect}\:{on}\:{the} \\ $$$${result}? \\ $$
Answered by Rasheed.Sindhi last updated on 24/Mar/22
$$\mathcal{A}\:\mathcal{T}{ry}… \\ $$$$\left({e}\:{represents}\:{even}\:{and}\:{o}\:{represents}\:{odd}\:{here}\right) \\ $$$${Case}\mathrm{0}:{No}\:{one}\:{of}\:{a},{b},{c}\:{is}\:{odd}. \\ $$$${Let}\:{a},{b},{c}\:{are}\:{denoted}\:{as}\:{e}_{{a}} ,{e}_{{b}} ,{e}_{{c}} \\ $$$${respectively}. \\ $$$${ab}−{c}={e}_{{a}} {e}_{{b}} −{e}_{{c}} =\mathrm{2}^{{l}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{e}−{e}={e} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{e}={e} \\ $$$${bc}−{a}={e}_{{b}} {e}_{{c}} −{e}_{{a}} =\mathrm{2}^{{m}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{e}−{e}={e} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{e}={e} \\ $$$${ca}−{b}={e}_{{c}} {e}_{{a}} −{e}_{{b}} =\mathrm{2}^{{n}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{e}−{e}={e} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{e}={e} \\ $$$$\mathcal{N}{o}\:{contradiction}! \\ $$$${Case}\mathrm{1}:{Only}\:{one}\:{of}\:{a},{b},{c}\:{is}\:{odd}. \\ $$$${Let}\:{a},{b},{c}\:{are}\:{denoted}\:{as}\:{o}_{{a}} ,{e}_{{b}} ,{e}_{{c}} \\ $$$${respectively}. \\ $$$${ab}−{c}={o}_{{a}} {e}_{{b}} −{e}_{{c}} =\mathrm{2}^{{l}} \\ $$$${bc}−{a}={e}_{{b}} {e}_{{c}} −{o}_{{a}} =\mathrm{2}^{{m}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{e}−{o}={e} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{o}={e} \\ $$$${Contrdiction}! \\ $$$${ca}−{b}={e}_{{c}} {o}_{{a}} −{e}_{{b}} =\mathrm{2}^{{n}} \\ $$$${Case}\mathrm{2}:{Only}\:{two}\:{of}\:{a},{b},{c}\:{are}\:{odd}. \\ $$$${Let}\:{a},{b},{c}\:{are}\:{denoted}\:{as}\:{o}_{{a}} ,{o}_{{b}} ,{e}_{{c}} \\ $$$${respectively}. \\ $$$${ab}−{c}={o}_{{a}} {o}_{{b}} −{e}_{{c}} =\mathrm{2}^{{l}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{o}−{e}={e} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{o}={e} \\ $$$${Contrdiction}! \\ $$$${Case}\mathrm{3}:{All}\:{of}\:{a},{b},{c}\:{are}\:{odd}. \\ $$$${Let}\:{a},{b},{c}\:{are}\:{denoted}\:{as}\:{o}_{{a}} ,{o}_{{b}} ,{o}_{{c}} \\ $$$${respectively}. \\ $$$${ab}−{c}={o}_{{a}} {o}_{{b}} −{o}_{{c}} =\mathrm{2}^{{l}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{o}−{o}={e} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{e}={e} \\ $$$${bc}−{a}={o}_{{b}} {o}_{{c}} −{o}_{{a}} =\mathrm{2}^{{m}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{o}−{o}={e} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{e}={e} \\ $$$${ca}−{b}={o}_{{c}} {o}_{{a}} −{o}_{{b}} =\mathrm{2}^{{l}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{o}−{o}={e} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{e}={e} \\ $$$$\mathcal{N}{o}\:{contradiction}! \\ $$$$ \\ $$$$\therefore\:\mathcal{E}{ither}\:{all}\:{the}\:{three}\:{are}\:{odd}\:{or} \\ $$$${even}. \\ $$$$\begin{array}{|c|}{\begin{array}{|c|}{{a},{b},{c}\:\in\:\mathbb{E}}\\\hline\end{array}_{\begin{array}{|c|}{\mathrm{or}}\\\hline\end{array}_{\:\:\begin{array}{|c|}{{a},{b},{c}\:\in_{} ^{} \:\mathbb{O}}\\\hline\end{array}} } }\\\hline\end{array} \\ $$