Menu Close

Q-179570-Posted-by-Infinityaction-30-10-2022-find-the-minimum-of-f-x-f-x-x-2-4-x-2-8x-12-x-25-x-2-4-x-2-16x-16-x-80-f-x-x-4-2-2-x-3-2-




Question Number 179717 by a.lgnaoui last updated on 01/Nov/22
Q 179570 (Posted by Infinityaction 30.10.2022)  find the minimum of f(x)  f(x)=(√(x^2 +(4/x^2 )−8x−((12)/x)+25)) +(√(x^2 +(4/x^2 )−16x−((16)/x)+80))   −−−−−−−−−−−−−−−−−−  f(x)=(√((x−4)^2 +((2/x)−3)^2 ))  +(√((x−8)^2 +((2/x)−4)^2 ))   Df=R−{0}    f(x)≥0   Min(f(x))=x / f(x)=0  (√((x−4)^2 +((2/x)−3)^2  )) +(√((x−8)^2 +((2/x)−4)^2  )) =0  (x−4)^2 +((2/x)−3)^2 =(x−8)^2 +((2/x)−4)^2    (1)  x−8=(x−4)−4    and  ((2/x)−4)=((2/x)−3)−1    x^2 −((55)/8)x+(1/2)=0   x=0,07351334 and x=6,80148666}  x=0,073513334  f(x)=49,044679(rejete)  x=6,80148666     f(x)=7,7899055  Donc  7,7899055   est minimum de f(x)
Q179570(PostedbyInfinityaction30.10.2022)findtheminimumoff(x)f(x)=x2+4x28x12x+25+x2+4x216x16x+80f(x)=(x4)2+(2x3)2+(x8)2+(2x4)2Df=R{0}f(x)0Min(f(x))=x/f(x)=0(x4)2+(2x3)2+(x8)2+(2x4)2=0(x4)2+(2x3)2=(x8)2+(2x4)2(1)x8=(x4)4and(2x4)=(2x3)1x2558x+12=0x=0,07351334andx=6,80148666}x=0,073513334f(x)=49,044679(rejete)x=6,80148666f(x)=7,7899055Donc7,7899055estminimumdef(x)
Commented by a.lgnaoui last updated on 01/Nov/22
Q179570   (look to  actual anser)
Q179570(looktoactualanser)
Commented by mr W last updated on 01/Nov/22
wrong!  what′s the reason that (√(a(x)))+(√(b(x))) =0  means mininum of (√(a(x)))+(√(b(x)))?  it′s paradox that you set   (√(a(x)))+(√(b(x)))=0 and at same time you  get (√(a(x)))+(√(b(x))) =minimum≠0.  besides you set (√(a(x)))+(√(b(x)))=0 and  at same time a(x)=b(x). your logic   is weird.
wrong!whatsthereasonthata(x)+b(x)=0meansmininumofa(x)+b(x)?itsparadoxthatyouseta(x)+b(x)=0andatsametimeyougeta(x)+b(x)=minimum0.besidesyouseta(x)+b(x)=0andatsametimea(x)=b(x).yourlogicisweird.
Commented by a.lgnaoui last updated on 01/Nov/22
We can find de value by derivation of f(x)  i have trying it but its long  I try aigain I hope that the   resultat were similaire.
Wecanfinddevaluebyderivationoff(x)ihavetryingitbutitslongItryaigainIhopethattheresultatweresimilaire.
Commented by mr W last updated on 01/Nov/22
i think it′s impossible to find the  minimum exactly in this question.
ithinkitsimpossibletofindtheminimumexactlyinthisquestion.
Commented by a.lgnaoui last updated on 01/Nov/22
(√(a(x)^2 +b(x)^2 )) +(√(c(x)^2 +d(x)^2 )) ≥0  pour x∈Df  so the minimum is the value of x  wich a(x)^2 +b(x)^2 =0  and  c(x)^2 +d(x)^2 =0  (√(a(x)^2 +b(x)^2 )) =−(√(c(x)^2 +d(x)^2  ))  a(x)^2 +b(x)^2 =c(x)^2 +d(x)^2   lim(f(x)_(x→+∞) =lim(f(x)_(x→−∞) )=∞  im(f(x))_(x→±0) =+∞
a(x)2+b(x)2+c(x)2+d(x)20pourxDfsotheminimumisthevalueofxwicha(x)2+b(x)2=0andc(x)2+d(x)2=0a(x)2+b(x)2=c(x)2+d(x)2a(x)2+b(x)2=c(x)2+d(x)2lim(f(x)x+=lim(f(x)x)=im(f(x))x±0=+
Commented by mr W last updated on 01/Nov/22
it′s clearly wrong.  just look at example:  f(x)=(√(x^2 +4))+(√(x^2 +8))
itsclearlywrong.justlookatexample:f(x)=x2+4+x2+8
Answered by manxsol last updated on 01/Nov/22
Commented by manxsol last updated on 01/Nov/22
Commented by mr W last updated on 01/Nov/22
Commented by manxsol last updated on 02/Nov/22
ok,AP≠PB.use f′(x)  o   .......
ok,APPB.usef(x)o.
Commented by manxsol last updated on 02/Nov/22
thanks
thanks
Commented by mr W last updated on 02/Nov/22
f′(x)=0 can not be exactly solved,  therefore the minimum of f(x) can   not be calculated exactly.
f(x)=0cannotbeexactlysolved,thereforetheminimumoff(x)cannotbecalculatedexactly.

Leave a Reply

Your email address will not be published. Required fields are marked *