Question Number 179717 by a.lgnaoui last updated on 01/Nov/22
$$\mathrm{Q}\:\mathrm{179570}\:\left({Posted}\:{by}\:\mathrm{Infinityaction}\:\mathrm{30}.\mathrm{10}.\mathrm{2022}\right) \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{of}\:\mathrm{f}\left(\mathrm{x}\right) \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\sqrt{\mathrm{x}^{\mathrm{2}} +\frac{\mathrm{4}}{\mathrm{x}^{\mathrm{2}} }−\mathrm{8x}−\frac{\mathrm{12}}{\mathrm{x}}+\mathrm{25}}\:+\sqrt{\mathrm{x}^{\mathrm{2}} +\frac{\mathrm{4}}{\mathrm{x}^{\mathrm{2}} }−\mathrm{16x}−\frac{\mathrm{16}}{{x}}+\mathrm{80}}\: \\ $$$$−−−−−−−−−−−−−−−−−− \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\sqrt{\left(\mathrm{x}−\mathrm{4}\right)^{\mathrm{2}} +\left(\frac{\mathrm{2}}{\mathrm{x}}−\mathrm{3}\right)^{\mathrm{2}} }\:\:+\sqrt{\left(\mathrm{x}−\mathrm{8}\right)^{\mathrm{2}} +\left(\frac{\mathrm{2}}{\mathrm{x}}−\mathrm{4}\right)^{\mathrm{2}} }\: \\ $$$$\mathrm{D}{f}=\mathbb{R}−\left\{\mathrm{0}\right\}\:\:\:\:\mathrm{f}\left(\mathrm{x}\right)\geqslant\mathrm{0}\: \\ $$$$\mathrm{Min}\left(\mathrm{f}\left(\mathrm{x}\right)\right)=\mathrm{x}\:/\:{f}\left(\mathrm{x}\right)=\mathrm{0} \\ $$$$\sqrt{\left(\mathrm{x}−\mathrm{4}\right)^{\mathrm{2}} +\left(\frac{\mathrm{2}}{\mathrm{x}}−\mathrm{3}\right)^{\mathrm{2}} \:}\:+\sqrt{\left(\mathrm{x}−\mathrm{8}\right)^{\mathrm{2}} +\left(\frac{\mathrm{2}}{\mathrm{x}}−\mathrm{4}\right)^{\mathrm{2}} \:}\:=\mathrm{0} \\ $$$$\left(\mathrm{x}−\mathrm{4}\right)^{\mathrm{2}} +\left(\frac{\mathrm{2}}{\mathrm{x}}−\mathrm{3}\right)^{\mathrm{2}} =\left(\mathrm{x}−\mathrm{8}\right)^{\mathrm{2}} +\left(\frac{\mathrm{2}}{\mathrm{x}}−\mathrm{4}\right)^{\mathrm{2}} \:\:\:\left(\mathrm{1}\right) \\ $$$$\mathrm{x}−\mathrm{8}=\left(\mathrm{x}−\mathrm{4}\right)−\mathrm{4}\:\:\:\:\mathrm{and}\:\:\left(\frac{\mathrm{2}}{\mathrm{x}}−\mathrm{4}\right)=\left(\frac{\mathrm{2}}{\mathrm{x}}−\mathrm{3}\right)−\mathrm{1} \\ $$$$\left.\:\:\mathrm{x}^{\mathrm{2}} −\frac{\mathrm{55}}{\mathrm{8}}\mathrm{x}+\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{0}\:\:\:{x}=\mathrm{0},\mathrm{07351334}\:{and}\:{x}=\mathrm{6},\mathrm{80148666}\right\} \\ $$$$\mathrm{x}=\mathrm{0},\mathrm{073513334} \\ $$$${f}\left(\mathrm{x}\right)=\mathrm{49},\mathrm{044679}\left({rejete}\right) \\ $$$$\mathrm{x}=\mathrm{6},\mathrm{80148666}\:\:\:\:\:{f}\left(\mathrm{x}\right)=\mathrm{7},\mathrm{7899055} \\ $$$${Donc}\:\:\mathrm{7},\mathrm{7899055}\:\:\:{est}\:{minimum}\:{de}\:{f}\left({x}\right) \\ $$$$ \\ $$
Commented by a.lgnaoui last updated on 01/Nov/22
$${Q}\mathrm{179570}\:\:\:\left({look}\:{to}\:\:{actual}\:{anser}\right) \\ $$
Commented by mr W last updated on 01/Nov/22
$${wrong}! \\ $$$${what}'{s}\:{the}\:{reason}\:{that}\:\sqrt{{a}\left({x}\right)}+\sqrt{{b}\left({x}\right)}\:=\mathrm{0} \\ $$$${means}\:{mininum}\:{of}\:\sqrt{{a}\left({x}\right)}+\sqrt{{b}\left({x}\right)}? \\ $$$${it}'{s}\:{paradox}\:{that}\:{you}\:{set}\: \\ $$$$\sqrt{{a}\left({x}\right)}+\sqrt{{b}\left({x}\right)}=\mathrm{0}\:{and}\:{at}\:{same}\:{time}\:{you} \\ $$$${get}\:\sqrt{{a}\left({x}\right)}+\sqrt{{b}\left({x}\right)}\:={minimum}\neq\mathrm{0}. \\ $$$${besides}\:{you}\:{set}\:\sqrt{{a}\left({x}\right)}+\sqrt{{b}\left({x}\right)}=\mathrm{0}\:{and} \\ $$$${at}\:{same}\:{time}\:{a}\left({x}\right)={b}\left({x}\right).\:{your}\:{logic}\: \\ $$$${is}\:{weird}. \\ $$
Commented by a.lgnaoui last updated on 01/Nov/22
$$\mathrm{We}\:\mathrm{can}\:\mathrm{find}\:\mathrm{de}\:\mathrm{value}\:\mathrm{by}\:\mathrm{derivation}\:\mathrm{of}\:\mathrm{f}\left(\mathrm{x}\right) \\ $$$$\mathrm{i}\:\mathrm{have}\:\mathrm{trying}\:\mathrm{it}\:\mathrm{but}\:\mathrm{its}\:\mathrm{long} \\ $$$$\mathrm{I}\:\mathrm{try}\:\mathrm{aigain}\:\mathrm{I}\:\mathrm{hope}\:\mathrm{that}\:\mathrm{the}\: \\ $$$$\mathrm{resultat}\:\mathrm{were}\:\mathrm{similaire}. \\ $$
Commented by mr W last updated on 01/Nov/22
$${i}\:{think}\:{it}'{s}\:{impossible}\:{to}\:{find}\:{the} \\ $$$${minimum}\:{exactly}\:{in}\:{this}\:{question}. \\ $$
Commented by a.lgnaoui last updated on 01/Nov/22
$$\sqrt{{a}\left({x}\right)^{\mathrm{2}} +{b}\left({x}\right)^{\mathrm{2}} }\:+\sqrt{{c}\left({x}\right)^{\mathrm{2}} +{d}\left({x}\right)^{\mathrm{2}} }\:\geqslant\mathrm{0}\:\:{pour}\:{x}\in{Df} \\ $$$${so}\:{the}\:{minimum}\:{is}\:{the}\:{value}\:{of}\:{x} \\ $$$${wich}\:{a}\left({x}\right)^{\mathrm{2}} +{b}\left({x}\right)^{\mathrm{2}} =\mathrm{0}\:\:{and}\:\:{c}\left({x}\right)^{\mathrm{2}} +{d}\left({x}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\sqrt{{a}\left({x}\right)^{\mathrm{2}} +{b}\left({x}\right)^{\mathrm{2}} }\:=−\sqrt{{c}\left({x}\right)^{\mathrm{2}} +{d}\left({x}\right)^{\mathrm{2}} \:} \\ $$$${a}\left({x}\right)^{\mathrm{2}} +{b}\left({x}\right)^{\mathrm{2}} ={c}\left({x}\right)^{\mathrm{2}} +{d}\left({x}\right)^{\mathrm{2}} \\ $$$$\mathrm{lim}\left(\mathrm{f}\left(\mathrm{x}\right)_{\mathrm{x}\rightarrow+\infty} =\mathrm{lim}\left(\mathrm{f}\left(\mathrm{x}\right)_{\mathrm{x}\rightarrow−\infty} \right)=\infty\right. \\ $$$$\mathrm{im}\left(\mathrm{f}\left(\mathrm{x}\right)\right)_{\mathrm{x}\rightarrow\pm\mathrm{0}} =+\infty \\ $$
Commented by mr W last updated on 01/Nov/22
$${it}'{s}\:{clearly}\:{wrong}. \\ $$$${just}\:{look}\:{at}\:{example}: \\ $$$${f}\left({x}\right)=\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}+\sqrt{{x}^{\mathrm{2}} +\mathrm{8}} \\ $$
Answered by manxsol last updated on 01/Nov/22
Commented by manxsol last updated on 01/Nov/22
Commented by mr W last updated on 01/Nov/22
Commented by manxsol last updated on 02/Nov/22
$${ok},{AP}\neq{PB}.{use}\:{f}'\left({x}\right)\:\:{o}\:\:\:……. \\ $$
Commented by manxsol last updated on 02/Nov/22
$${thanks} \\ $$
Commented by mr W last updated on 02/Nov/22
$${f}'\left({x}\right)=\mathrm{0}\:{can}\:{not}\:{be}\:{exactly}\:{solved}, \\ $$$${therefore}\:{the}\:{minimum}\:{of}\:{f}\left({x}\right)\:{can}\: \\ $$$${not}\:{be}\:{calculated}\:{exactly}. \\ $$