Menu Close

Q-26-58-k-29-0-and-k-N-find-Min-k-




Question Number 173411 by mnjuly1970 last updated on 11/Jul/22
         Q :              ( 26 ! )^( 58)  + k ≡^( 29)  0               and ,  k ∈ N ,  find:                                        Min ( k )=?
Q:(26!)58+k290and,kN,find:Min(k)=?
Answered by Rasheed.Sindhi last updated on 11/Jul/22
(29−1)!≡−1(mod 29) [Wilson′s theorem]  28!≡−1+29(mod 29)  28!≡28(mod 29)  27!≡1(mod 29)  27!≡1+29×13(mod 29)  27!≡378(mod 29)  26!≡14(mod 29)  (26!)^2 ≡14^2 ≡22(mod 29).....(i)  (26!)^(28) ≡14^(28) ≡1(mod 29)  {(26!)^(28) }^2 ≡1^2 (mod 29)........(ii)  (i)×(ii)  (26!)^(56) ∙(26!)^2 ≡1∙22(mod 29)  (26!)^(58) ≡22−29=−7(mod 29)  (26!)^(58) +7≡0(mod 29)  (26!)^(58) +7+29m≡0(mod 29)  k=7+29m [k∈N⇒m≥0]  m=0: min(k)=7
(291)!1(mod29)[Wilsonstheorem]28!1+29(mod29)28!28(mod29)27!1(mod29)27!1+29×13(mod29)27!378(mod29)26!14(mod29)(26!)214222(mod29)..(i)(26!)2814281(mod29){(26!)28}212(mod29)..(ii)(i)×(ii)(26!)56(26!)2122(mod29)(26!)582229=7(mod29)(26!)58+70(mod29)(26!)58+7+29m0(mod29)k=7+29m[kNm0]m=0:min(k)=7
Commented by mnjuly1970 last updated on 11/Jul/22
thanks alot sir
thanksalotsir

Leave a Reply

Your email address will not be published. Required fields are marked *