Menu Close

Q-f-x-e-x-x-4-is-given-put-h-x-ln-x-f-1-x-find-D-h-domain-of-h-




Question Number 173298 by mnjuly1970 last updated on 09/Jul/22
Q:       f(x)= e^( x) + x −4 is given       put :     h(x)= ln(x−f^( −1) (x))        find :    D_( h )  = (domain of    h )
Q:f(x)=ex+x4isgivenput:h(x)=ln(xf1(x))find:Dh=(domainofh)
Answered by floor(10²Eta[1]) last updated on 09/Jul/22
we want: x−f^(−1) (x)>0⇒x>f^(−1) (x)  note that f′(x)=e^x +1>0 ∀ x ∈ R  ⇒f is increasing i.e., ∀ a,b∈D_f ∴a>b⇒f(a)>f(b)    now back to x>f^(−1) (x)  since f is incresing∴f(x)>f(f^(−1) (x))  ⇒f(x)>x⇒e^x +x−4>x⇒e^x >4⇒x>ln4  ⇒D_h ={x∈R∣x>ln4}
wewant:xf1(x)>0x>f1(x)notethatf(x)=ex+1>0xRfisincreasingi.e.,a,bDfa>bf(a)>f(b)nowbacktox>f1(x)sincefisincresingf(x)>f(f1(x))f(x)>xex+x4>xex>4x>ln4Dh={xRx>ln4}

Leave a Reply

Your email address will not be published. Required fields are marked *