Menu Close

Q-f-x-e-x-x-4-is-given-put-h-x-ln-x-f-1-x-find-D-h-domain-of-h-




Question Number 173298 by mnjuly1970 last updated on 09/Jul/22
Q:       f(x)= e^( x) + x −4 is given       put :     h(x)= ln(x−f^( −1) (x))        find :    D_( h )  = (domain of    h )
$$\mathrm{Q}: \\ $$$$\:\:\:\:\:{f}\left({x}\right)=\:{e}^{\:{x}} +\:{x}\:−\mathrm{4}\:{is}\:{given} \\ $$$$\:\:\:\:\:{put}\::\:\:\:\:\:{h}\left({x}\right)=\:{ln}\left({x}−{f}^{\:−\mathrm{1}} \left({x}\right)\right) \\ $$$$\:\:\:\:\:\:{find}\::\:\:\:\:\mathrm{D}_{\:{h}\:} \:=\:\left({domain}\:{of}\:\:\:\:{h}\:\right) \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Answered by floor(10²Eta[1]) last updated on 09/Jul/22
we want: x−f^(−1) (x)>0⇒x>f^(−1) (x)  note that f′(x)=e^x +1>0 ∀ x ∈ R  ⇒f is increasing i.e., ∀ a,b∈D_f ∴a>b⇒f(a)>f(b)    now back to x>f^(−1) (x)  since f is incresing∴f(x)>f(f^(−1) (x))  ⇒f(x)>x⇒e^x +x−4>x⇒e^x >4⇒x>ln4  ⇒D_h ={x∈R∣x>ln4}
$$\mathrm{we}\:\mathrm{want}:\:\mathrm{x}−\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right)>\mathrm{0}\Rightarrow\mathrm{x}>\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right) \\ $$$$\mathrm{note}\:\mathrm{that}\:\mathrm{f}'\left(\mathrm{x}\right)=\mathrm{e}^{\mathrm{x}} +\mathrm{1}>\mathrm{0}\:\forall\:\mathrm{x}\:\in\:\mathbb{R} \\ $$$$\Rightarrow\mathrm{f}\:\mathrm{is}\:\mathrm{increasing}\:\mathrm{i}.\mathrm{e}.,\:\forall\:\mathrm{a},\mathrm{b}\in\mathrm{D}_{\mathrm{f}} \therefore\mathrm{a}>\mathrm{b}\Rightarrow\mathrm{f}\left(\mathrm{a}\right)>\mathrm{f}\left(\mathrm{b}\right) \\ $$$$ \\ $$$$\mathrm{now}\:\mathrm{back}\:\mathrm{to}\:\mathrm{x}>\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right) \\ $$$$\mathrm{since}\:\mathrm{f}\:\mathrm{is}\:\mathrm{incresing}\therefore\mathrm{f}\left(\mathrm{x}\right)>\mathrm{f}\left(\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right)\right) \\ $$$$\Rightarrow\mathrm{f}\left(\mathrm{x}\right)>\mathrm{x}\Rightarrow\mathrm{e}^{\mathrm{x}} +\mathrm{x}−\mathrm{4}>\mathrm{x}\Rightarrow\mathrm{e}^{\mathrm{x}} >\mathrm{4}\Rightarrow\mathrm{x}>\mathrm{ln4} \\ $$$$\Rightarrow\mathrm{D}_{\mathrm{h}} =\left\{\mathrm{x}\in\mathbb{R}\mid\mathrm{x}>\mathrm{ln4}\right\} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *