Menu Close

Q-find-the-number-of-the-solutions-for-x-1-x-2-3-x-3-x-4-x-5-11-Hint-x-i-Z-0-




Question Number 189302 by mnjuly1970 last updated on 14/Mar/23
      Q:    find the number of                the  solutions  for :      ( x_( 1)  + x_( 2)  )^( 3)  + x_( 3)  + x_( 4)  + x_( 5)  =11           Hint:   ( x_( i)   ∈  Z^(  +)   ∪ { 0 }  )
$$ \\ $$$$\:\:\:\:{Q}:\:\:\:\:\mathrm{find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{the}\:\:\mathrm{solutions}\:\:\mathrm{for}\:: \\ $$$$ \\ $$$$\:\:\left(\:{x}_{\:\mathrm{1}} \:+\:{x}_{\:\mathrm{2}} \:\right)^{\:\mathrm{3}} \:+\:{x}_{\:\mathrm{3}} \:+\:{x}_{\:\mathrm{4}} \:+\:{x}_{\:\mathrm{5}} \:=\mathrm{11} \\ $$$$\:\:\: \\ $$$$\:\:\:\:{Hint}:\:\:\:\left(\:{x}_{\:{i}} \:\:\in\:\:\mathbb{Z}^{\:\:+} \:\:\cup\:\left\{\:\mathrm{0}\:\right\}\:\:\right) \\ $$$$\: \\ $$
Commented by Frix last updated on 14/Mar/23
Z^+ ∪{0}=N
$$\mathbb{Z}^{+} \cup\left\{\mathrm{0}\right\}=\mathbb{N} \\ $$
Commented by Frix last updated on 14/Mar/23
a^3 +b=11  a=0∧b=11  a=1∧b=10  a=2∧b=3  Now it′s just counting...
$${a}^{\mathrm{3}} +{b}=\mathrm{11} \\ $$$${a}=\mathrm{0}\wedge{b}=\mathrm{11} \\ $$$${a}=\mathrm{1}\wedge{b}=\mathrm{10} \\ $$$${a}=\mathrm{2}\wedge{b}=\mathrm{3} \\ $$$$\mathrm{Now}\:\mathrm{it}'\mathrm{s}\:\mathrm{just}\:\mathrm{counting}… \\ $$
Answered by manxsol last updated on 15/Mar/23
a^3 +b=11   determinant ((a,b,),(0,(11),),(1,(10),),(2,3,))      x_c_  =x_4 +x_5    determinant ((a,x_1 ,x_2 ),(0,0,0),(1,0,1),(1,1,0),(2,0,2),(2,1,1),(2,2,0))  determinant ((b,x_3 ,x_c ,),((11),(11),0,),((11),(10),1,),((11),9,2,),(,,,),(,,,),((11),0,(11),))     determinant ((x_c ,x_4 ,x_5 ,♯),(0,0,0,1),(1, determinant ((0),(1)), determinant ((1),(0)),2),(2, determinant ((0),(1),(2)), determinant ((2),(1),(2)),3),(3, determinant ((0),(1),(2),(3)), determinant ((3),(2),(1),(0)),4),(,,,),(4,,,),(5,,,),(6,,,),(7,,,),(8,,,),(9,,,),((10),,,),((11),,,),(,,,(Σ_1 ^(12) =78)))_    determinant (((x_(1  ) x_2 ),x_3 ,(x_(4   ) x_5 ),((x_1^�  x_2 ,x_(3,) ,x_4 ,x_5 )),(6,(12),(78),(5616)))
$${a}^{\mathrm{3}} +{b}=\mathrm{11} \\ $$$$\begin{array}{|c|c|c|c|}{{a}}&\hline{{b}}&\hline{}\\{\mathrm{0}}&\hline{\mathrm{11}}&\hline{}\\{\mathrm{1}}&\hline{\mathrm{10}}&\hline{}\\{\mathrm{2}}&\hline{\mathrm{3}}&\hline{}\\\hline\end{array}\:\:\:\:\:\:{x}_{{c}_{} } =\underset{\mathrm{4}} {{x}}+{x}_{\mathrm{5}} \\ $$$$\begin{array}{|c|c|c|c|c|c|c|}{{a}}&\hline{{x}_{\mathrm{1}} }&\hline{{x}_{\mathrm{2}} }\\{\mathrm{0}}&\hline{\mathrm{0}}&\hline{\mathrm{0}}\\{\mathrm{1}}&\hline{\mathrm{0}}&\hline{\mathrm{1}}\\{\mathrm{1}}&\hline{\mathrm{1}}&\hline{\mathrm{0}}\\{\mathrm{2}}&\hline{\mathrm{0}}&\hline{\mathrm{2}}\\{\mathrm{2}}&\hline{\mathrm{1}}&\hline{\mathrm{1}}\\{\mathrm{2}}&\hline{\mathrm{2}}&\hline{\mathrm{0}}\\\hline\end{array}\:\begin{array}{|c|c|c|c|c|c|c|}{{b}}&\hline{{x}_{\mathrm{3}} }&\hline{{x}_{{c}} }&\hline{}\\{\mathrm{11}}&\hline{\mathrm{11}}&\hline{\mathrm{0}}&\hline{}\\{\mathrm{11}}&\hline{\mathrm{10}}&\hline{\mathrm{1}}&\hline{}\\{\mathrm{11}}&\hline{\mathrm{9}}&\hline{\mathrm{2}}&\hline{}\\{}&\hline{}&\hline{}&\hline{}\\{}&\hline{}&\hline{}&\hline{}\\{\mathrm{11}}&\hline{\mathrm{0}}&\hline{\mathrm{11}}&\hline{}\\\hline\end{array} \\ $$$$ \\ $$$$\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}{{x}_{{c}} }&\hline{{x}_{\mathrm{4}} }&\hline{{x}_{\mathrm{5}} }&\hline{\sharp}\\{\mathrm{0}}&\hline{\mathrm{0}}&\hline{\mathrm{0}}&\hline{\mathrm{1}}\\{\mathrm{1}}&\hline{\begin{array}{|c|c|}{\mathrm{0}}\\{\mathrm{1}}\\\hline\end{array}}&\hline{\begin{array}{|c|c|}{\mathrm{1}}\\{\mathrm{0}}\\\hline\end{array}}&\hline{\mathrm{2}}\\{\mathrm{2}}&\hline{\begin{array}{|c|c|c|}{\mathrm{0}}\\{\mathrm{1}}\\{\mathrm{2}}\\\hline\end{array}}&\hline{\begin{array}{|c|c|c|}{\mathrm{2}}\\{\mathrm{1}}\\{\mathrm{2}}\\\hline\end{array}}&\hline{\mathrm{3}}\\{\mathrm{3}}&\hline{\begin{array}{|c|c|c|c|}{\mathrm{0}}\\{\mathrm{1}}\\{\mathrm{2}}\\{\mathrm{3}}\\\hline\end{array}}&\hline{\begin{array}{|c|c|c|c|}{\mathrm{3}}\\{\mathrm{2}}\\{\mathrm{1}}\\{\mathrm{0}}\\\hline\end{array}}&\hline{\mathrm{4}}\\{}&\hline{}&\hline{}&\hline{}\\{\mathrm{4}}&\hline{}&\hline{}&\hline{}\\{\mathrm{5}}&\hline{}&\hline{}&\hline{}\\{\mathrm{6}}&\hline{}&\hline{}&\hline{}\\{\mathrm{7}}&\hline{}&\hline{}&\hline{}\\{\mathrm{8}}&\hline{}&\hline{}&\hline{}\\{\mathrm{9}}&\hline{}&\hline{}&\hline{}\\{\mathrm{10}}&\hline{}&\hline{}&\hline{}\\{\mathrm{11}}&\hline{}&\hline{}&\hline{}\\{}&\hline{}&\hline{}&\hline{\sum_{\mathrm{1}} ^{\mathrm{12}} =\mathrm{78}}\\\hline\end{array}_{} \\ $$$$\begin{array}{|c|c|}{{x}_{\mathrm{1}\:\:} {x}_{\mathrm{2}} }&\hline{{x}_{\mathrm{3}} }&\hline{{x}_{\mathrm{4}\:\:\:} {x}_{\mathrm{5}} }&\hline{\left({x}_{\hat {\mathrm{1}}} {x}_{\mathrm{2}} ,{x}_{\mathrm{3},} ,{x}_{\mathrm{4}} ,{x}_{\mathrm{5}} \right.}\\{\mathrm{6}}&\hline{\mathrm{12}}&\hline{\mathrm{78}}&\hline{\mathrm{5616}}\\\hline\end{array} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *