Menu Close

Q-Find-the-remainder-of-dividing-the-following-number-by-7-N-3-10-1-3-10-2-3-10-3-3-10-10-




Question Number 192893 by mnjuly1970 last updated on 30/May/23
        Q : Find  the remainder of  dividing                the following number by  7 .              N = 3^( 10^( 1) )  + 3^( 10^( 2)  )  + 3^( 10^( 3)  )  + ... + 3^( 10^( 10) )                                 ...   @ nice − mathematics ...
$$ \\ $$$$\:\:\:\:\:\:\mathrm{Q}\::\:\mathrm{Find}\:\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{of}\:\:\mathrm{dividing} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{the}\:\mathrm{following}\:\mathrm{number}\:\mathrm{by}\:\:\mathrm{7}\:. \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{N}\:=\:\mathrm{3}^{\:\mathrm{10}^{\:\mathrm{1}} } \:+\:\mathrm{3}^{\:\mathrm{10}^{\:\mathrm{2}} \:} \:+\:\mathrm{3}^{\:\mathrm{10}^{\:\mathrm{3}} \:} \:+\:…\:+\:\mathrm{3}^{\:\mathrm{10}^{\:\mathrm{10}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:…\:\:\:@\:\mathrm{nice}\:−\:\mathrm{mathematics}\:… \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$
Answered by leodera last updated on 30/May/23
10^n  ≡ 0 mod(2)  10^n  ≡ 1 mod(3)    using  C.R.T  10^n  = 4 mod(6)    a^(Φ(7))  ≡ a^6  ≡ 1 mod(7)    3^(10^n  )  ≡ 3^((10^n  mod(6)))  ≡ 3^4  ≡ 4 mod(7)    3^(10^1  ) + 10^(10^2 )  + ...... + 3^(10^(10) )  ≡ 4+4+..._(10 times) .......+4 mod(7)  ≡ 4×10 ≡ 5 mod 7    the remainder is 5
$$\mathrm{10}^{{n}} \:\equiv\:\mathrm{0}\:{mod}\left(\mathrm{2}\right) \\ $$$$\mathrm{10}^{{n}} \:\equiv\:\mathrm{1}\:{mod}\left(\mathrm{3}\right) \\ $$$$ \\ $$$${using}\:\:{C}.{R}.{T} \\ $$$$\mathrm{10}^{{n}} \:=\:\mathrm{4}\:{mod}\left(\mathrm{6}\right) \\ $$$$ \\ $$$${a}^{\Phi\left(\mathrm{7}\right)} \:\equiv\:{a}^{\mathrm{6}} \:\equiv\:\mathrm{1}\:{mod}\left(\mathrm{7}\right) \\ $$$$ \\ $$$$\mathrm{3}^{\mathrm{10}^{{n}} \:} \:\equiv\:\mathrm{3}^{\left(\mathrm{10}^{{n}} \:{mod}\left(\mathrm{6}\right)\right)} \:\equiv\:\mathrm{3}^{\mathrm{4}} \:\equiv\:\mathrm{4}\:{mod}\left(\mathrm{7}\right) \\ $$$$ \\ $$$$\mathrm{3}^{\mathrm{10}^{\mathrm{1}} \:} +\:\mathrm{10}^{\mathrm{10}^{\mathrm{2}} } \:+\:……\:+\:\mathrm{3}^{\mathrm{10}^{\mathrm{10}} } \:\equiv\:\underbrace{\mathrm{4}+\mathrm{4}+..\underset{\mathrm{10}\:{times}} {.}…….+\mathrm{4}}\:{mod}\left(\mathrm{7}\right) \\ $$$$\equiv\:\mathrm{4}×\mathrm{10}\:\equiv\:\mathrm{5}\:{mod}\:\mathrm{7} \\ $$$$ \\ $$$${the}\:{remainder}\:{is}\:\mathrm{5} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *