Menu Close

Q-Find-the-value-of-Max-x-0-pi-2-sin-x-cos-3-x-




Question Number 174267 by mnjuly1970 last updated on 28/Jul/22
          Q::  Find   the  value  of :                                     Max_( x∈ [ 0 , (π/2) ])   { sin (x ). cos^( 3) ( x )∣  }=?
Q::Findthevalueof:Maxx[0,π2]{sin(x).cos3(x)}=?
Commented by kaivan.ahmadi last updated on 28/Jul/22
f′(x)=cos^4 x−3sin^2 xcos^2 x=0  ⇒cos^2 x(cos^2 x−3sin^2 x)=0⇒  cos^2 x=0⇒x=(π/2)  cos^2 x−3sin^2 x=0⇒tan^2 x=(1/3)  ⇒tanx=((√3)/3)⇒x=(π/6)  f(0)=0  f((π/2))=0  f((π/3))=(1/2)×(((√3)/2))^3 =((3(√3))/(16))  Max f =((3(√3))/(16))
f(x)=cos4x3sin2xcos2x=0cos2x(cos2x3sin2x)=0cos2x=0x=π2cos2x3sin2x=0tan2x=13tanx=33x=π6f(0)=0f(π2)=0f(π3)=12×(32)3=3316Maxf=3316
Commented by mnjuly1970 last updated on 28/Jul/22
     thanks alot sir     also ...((3(√3))/(16))      typo
thanksalotsiralso3316typo
Commented by kaivan.ahmadi last updated on 28/Jul/22
another way  a=sin^2 x , b=cos^2 x ,a+b=1  Max(f)=Max(sin^2 x)^(1/2) .(cos^2 x)^(3/2) =  a^(1/2) b^(3/2) :(a/(1/2))=(b/(3/2))  b=3a,a+b=1⇒a=(1/4),b=(3/4)  Max(f)=((1/4))^(1/2) ((3/4))^(3/2) =  (1/2)(√(((3/4))^3 ))=(1/2)×((3(√3))/8)=((3(√3))/(16))
anotherwaya=sin2x,b=cos2x,a+b=1Max(f)=Max(sin2x)12.(cos2x)32=a12b32:a12=b32b=3a,a+b=1a=14,b=34Max(f)=(14)12(34)32=12(34)3=12×338=3316
Commented by infinityaction last updated on 28/Jul/22
how  (a/(1/2)) = (b/(3/2))
howa12=b32
Commented by mnjuly1970 last updated on 28/Jul/22
 because  a+b=cte
becausea+b=cte
Commented by kaivan.ahmadi last updated on 28/Jul/22
proposition:   if a,b>0 and a+b=k>0  (cte)  ⇒Max (a^m . b^n ): (a/m)=(b/n)
proposition:ifa,b>0anda+b=k>0(cte)Max(am.bn):am=bn
Commented by Tawa11 last updated on 28/Jul/22
Great sirs
Greatsirs

Leave a Reply

Your email address will not be published. Required fields are marked *