Menu Close

Q-how-many-natural-numbers-less-than-6000-exist-such-as-the-sum-of-their-digits-equal-to-8-choices-155-165-164-158-




Question Number 172802 by mnjuly1970 last updated on 01/Jul/22
         Q:    how many natural numbers less than        6000  , exist such as the sum of          their digits  equal to   8 ?   choices:    155              165             164          158
Q:howmanynaturalnumberslessthan6000,existsuchasthesumoftheirdigitsequalto8?choices:155165164158
Answered by mr W last updated on 02/Jul/22
1−digit numbers:  8   ⇒1 number    2−digit numbers:  17/71,26/62,35/53,44,80   ⇒8 numbers    3−digit numbers:  abc with a+b+c=8 and  a≥1 and b, c≥0  (x+x^2 +...)(1+x+x^2 +...)^2 =xΣ_(k=0) ^∞ C_2 ^(k+2) x^k   ⇒C_2 ^(7+2) =36 numbers    4−digit numbers:  abcd with a+b+c+d=8 and  1≤a≤5 and b,c,d≥0  (x+x^2 +x^3 +x^4 +x^5 )(1+x+x^2 +...)^3   =x(1−x^5 )Σ_(k=0) ^∞ C_3 ^(k+3) x^k   ⇒C_3 ^(7+3) −C_3 ^(2+3) =110 numbers    totally:   1+8+36+110=155 numbers exist. ✓  or  (1+x+x^2 +x^3 +x^4 +x^5 )(1+x+x^2 +...)^3   =(1−x^6 )Σ_(k=0) ^∞ C_3 ^(k+3) x^k   ⇒C_3 ^(8+3) −C_3 ^(2+3) =155 numbers
1digitnumbers:81number2digitnumbers:17/71,26/62,35/53,44,808numbers3digitnumbers:abcwitha+b+c=8anda1andb,c0(x+x2+)(1+x+x2+)2=xk=0C2k+2xkC27+2=36numbers4digitnumbers:abcdwitha+b+c+d=8and1a5andb,c,d0(x+x2+x3+x4+x5)(1+x+x2+)3=x(1x5)k=0C3k+3xkC37+3C32+3=110numberstotally:1+8+36+110=155numbersexist.or(1+x+x2+x3+x4+x5)(1+x+x2+)3=(1x6)k=0C3k+3xkC38+3C32+3=155numbers
Commented by Tawa11 last updated on 01/Jul/22
Great sir
Greatsir
Commented by mr W last updated on 02/Jul/22
you mean the answer is correct Miss?
youmeantheansweriscorrectMiss?
Commented by mahdipoor last updated on 02/Jul/22
abcd with a+b+c+d=8 and a,b,c,d≥0  ⇒C_(k−1) ^( n+k−1) =C_3 ^( 11) =165  abcd with a+b+c+d=8 and a,b,c,d≥0  and bigger than 6000 :   { ((a=6 ⇒ b+c+d=2 ⇒C_2 ^( 4) =6)),((a=7 ⇒ b+c+d=1 ⇒C_2 ^( 3) =3)),((a=8 ⇒ b+c+d=0 ⇒C_2 ^( 2) =1)) :}  ⇒6+3+1=10  165−10=155
abcdwitha+b+c+d=8anda,b,c,d0Ck1n+k1=C311=165abcdwitha+b+c+d=8anda,b,c,d0andbiggerthan6000:{a=6b+c+d=2C24=6a=7b+c+d=1C23=3a=8b+c+d=0C22=16+3+1=1016510=155
Commented by peter frank last updated on 02/Jul/22
thanks
thanks

Leave a Reply

Your email address will not be published. Required fields are marked *